超高性能混凝土高温后动态劈裂抗拉性能
作者:
作者单位:

1.东北大学 资源与土木工程学院,辽宁 沈阳 110819;2.东北大学 低碳钢铁前沿技术研究院,辽宁 沈阳 110819

作者简介:

陈 猛(1981—),男,辽宁开原人,东北大学副教授,博士生导师,博士.E-mail:chenmeng@mail.neu.edu.cn

通讯作者:

张 通(1995—),男,黑龙江哈尔滨人,东北大学讲师,硕士生导师,博士.E-mail:zhangtong@mail.neu.edu.cn

中图分类号:

TU528.572

基金项目:

国家自然科学基金资助项目(52308395,52178382);博士后创新人才支持计划项目(BX20230063);中国博士后科学基金面上项目(2023M730526);中央高校基本科研业务专项资金资助项目(N2301023);辽宁省博士科研启动基金计划项目(2023-BS-058)


Dynamic Splitting Tensile Behavior of Ultra-High Performance Concrete after Exposition to Elevated Temperature
Author:
Affiliation:

1.School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;2.Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking,Northeastern University, Shenyang 110819, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究高温和应变率对超高性能混凝土(UHPC) 劈裂抗拉性能的影响,对不同温度(20、105、200、300、400 ℃)作用后UHPC的质量损失率、抗压强度、弹性模量、静态和动态(应变率为1.8~6.8 s-1)劈裂抗拉强度进行了测试. 结果表明:以2~10 ℃/min的加热速率升温至400 ℃后,所有试件均在保温期间发生爆裂性剥落;UHPC的抗压强度、弹性模量、静态劈裂抗拉强度均随温度增大而提高,300 ℃作用后比常温时分别提高了13.2%、19.1%和17.3%;动态劈裂抗拉强度和耗散能均具有明显的应变率效应,当应变率从1.8~2.2 s-1增加到6.3~6.8 s-1时,20~300 ℃作用后的UHPC动态劈裂抗拉强度和耗散能分别提高了69.1%~74.1%和146.7%~177.6%;高温作用后UHPC中C-S-H表面的吸附水、孔隙内自由水和凝胶结合水先后分解,增大了试件的质量损失率;基体内高温和高压环境促进了水泥水化反应和硅灰火山灰反应,提升了UHPC的致密程度,增强了钢纤维的桥连作用;在冲击荷载作用下,基体开裂速度的加快和由钢纤维拔出所致基体摩擦效应的增强导致耗散能增大.

    Abstract:

    To investigate the effects of elevated temperature and strain rate on the splitting tensile properties of ultra-high performance concrete(UHPC), the mass loss rate, compressive strength, elastic modulus, static and dynamic splitting tensile tests (strain rate increases from 1.9 s-1 to 6.8 s-1) were carried out at different temperatures(20, 105, 200, 300, 400 ℃). Results reveal that all specimens experienced explosive spalling during the temperature holding period after heating at a rate of 2-10 ℃/min to 400 ℃. The compressive strength, elastic modulus and static splitting strength of UHPC increase with the increase of temperature, and the strength of UHPC at 300 ℃ increases by 13.2%, 19.1% and 17.3%, respectively, relative to that at room temperature. The dynamic splitting strength and dissipated energy show an obvious strain rate effect. When the strain rate increases from about 2.0 s-1 to 6.5 s-1, the dynamic splitting strength and dissipated energy of UHPC increase by 69.1%-74.1% and 146.7%-177.6%, respectively, within the measured temperature range. After exposed to elevated temperatures, the adsorbed water on C-S-H gel surface, the free water in pores and the gel-bound water in UHPC are gradually decomposed, result in increase of the mass loss rate of UHPC. The high-temperature and high-pressure environment in UHPC matrix promotes cement hydration reaction and pozzolanic reaction, improving the density of UHPC matrix and the bridging effect of steel fiber. At the higher strain rate, the crack propagation in UHPC specimen is faster and the friction effect of steel fiber pulling out is enhanced, which leads to the increase of dissipated energy.

    图1 原材料的粒径分布Fig.1 Particle distribution of raw materials
    图2 分离式霍普金森杆试验装置示意图Fig.2 Schematic diagram of SHPB testing system(size:mm)
    图3 不同升温速率下400 ℃时UHPC试件的高温爆裂实物图Fig.3 Morphology of explosive spalling of UHPC specimen at 400 ℃ with different heating rates
    图4 UHPC试件的质量损失率Fig.4 Mass loss rate of UHPC specimens
    图5 不同温度下UHPC试件的抗压强度和弹性模量Fig.5 Compressive strength and elastic modulus of UHPC specimens at different temperatures
    图6 不同温度下UHPC试件的静态劈裂抗拉强度Fig.6 Static splitting tensile strength of UHPC specimens at different temperatures
    图7 主裂纹处钢纤维的微观形貌Fig.7 Microscopic morphology of steel fibers at the major crack
    图8 不同温度和应变率下UHPC试件的应力-时程曲线Fig.8 Stress-time curves of UHPC specimens at different temperatures and strain rates
    图9 不同温度和应变率下UHPC试件的动态劈裂抗拉强度Fig.9 Dynamic splitting strength of UHPC specimens at different temperatures and strain rates
    图10 不同温度和应变率下UHPC试件的DIF值Fig.10 DIF values of UHPC specimens at different temperatures and strain rates
    图11 不同温度和应变率下UHPC试件的耗散能Fig.11 Dissipated energy of UHPC specimens at different temperatures and strain rates
    图12 高温和应变率对UHPC劈裂抗拉性能的作用机理Fig.12 Mechanism of high temperature and strain rate on the splitting tensile properties of UHPC
    图13 不同温度下UHPC的XRD图谱Fig.13 XRD spectra of UHPC at different temperatures
    图14 不同温度作用后UHPC基体与钢纤维界面图像Fig.14 Images of UHPC matrix and steel fiber interfaces exposed to different temperatures
    表 1 水泥的化学组成Table 1 Chemical composition(by mass) of cement
    表 3 UHPC的配合比Table 3 Mix proportion of UHPC
    表 5 不同温度和应变率下UHPC试件的破坏形态Table 5 Failure patterns of UHPC specimens at different temperatures and strain rates
    参考文献
    [1] AMRAN M, MURALI G, MAKUL N, et al. Fire-induced spalling of ultra-high performance concrete:A systematic critical review[J]. Construction and Building Materials, 2023, 373:130869.
    [2] LI Y, TAN K H, YANG E H. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature[J]. Cement and Concrete Composites, 2019, 96:174-181.
    [3] SANCHAYAN S, FOSTER S J. High temperature behaviour of hybrid steel-PVA fibre reinforced reactive powder concrete[J]. Materials and Structures, 2016, 49(3):769-782.
    [4] HOU X M, ABID M, ZHENG W Z, et al. Evaluation of residual mechanical properties of steel fiber-reinforced reactive powder concrete after exposure to high temperature using nondestructive testing[J]. Procedia Engineering, 2017, 210:588-596.
    [5] LIANG X W, WU C Q, SU Y, et al. Development of ultra-high performance concrete with high fire resistance[J]. Construction and Building Materials, 2018, 179:400-412.
    [6] CHEN M, YANG F, ZHANG T, et al. Effect of elevated temperatures on behaviour of recycled steel and polypropylene fibre reinforced ultra-high performance concrete under dynamic splitting tension[J]. Journal of Building Engineering, 2024, 84:108586.
    [7] KANÉMA M, PLIYA P, NOUMOWÉ A, et al. Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature[J]. Journal of Materials in Civil Engineering, 2011, 23(7):921-930.
    [8] 陈明阳,侯晓萌,郑文忠,等. 混凝土高温爆裂临界温度和防爆裂纤维掺量研究综述与分析[J]. 建筑结构学报, 2017, 38(1):161-170.CHEN Mingyang, HOU Xiaomeng, ZHENG Wenzhong, et al. Review and analysis on spalling critical temperature of concrete and fibers dosage to prevent spalling at elevated temperatures[J]. Journal of Building Structures, 2017, 38(1):161-170. (in Chinese)
    [9] 朋改非,杨娟,石云兴,等. 超高性能混凝土抗高温爆裂性能试验研究[J]. 建筑材料学报, 2017, 20(2):229-233, 238.PENG Gaifei, YANG Juan, SHI Yunxing, et al. Explosive spalling resistance of ultrahigh performance concrete[J]. Journal of Building Materials, 2017, 20(2):229-233, 238. (in Chinese)
    [10] ZHENG W Z, LI H Y, WANG Y. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature[J]. Materials and Design, 2012, 41:403-409.
    [11] KODUR V, BANERJI S, SOLHMIRZAEI R. Effect of temperature on thermal properties of ultrahigh-performance concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(8):04020210.
    [12] 陈猛,李骜,张通. 混杂聚丙烯纤维-回收轮胎钢纤维增强UHPC高温后力学性能[J]. 建筑材料学报, 2023, 26(7):716-722.CHEN Meng, LI Ao, ZHANG Tong. Mechanical properties of hybrid polypropylene fiber-recycled tyre steel fiber reinforced UHPC after exposure to elevated temperature[J]. Journal of Building Materials, 2023, 26(7):716-722. (in Chinese)
    [13] 郑文忠,李海艳,王英. 高温后混杂纤维RPC单轴受压应力-应变关系[J]. 建筑材料学报, 2013, 16(3):388-395.ZHENG Wenzhong, LI Haiyan, WANG Ying. Compressive stress-strain relationship of hybrid fiber-reinforced reactive powder concrete after exposure to high temperature[J]. Journal of Building Materials, 2013, 16(3):388-395. (in Chinese)
    [14] CHEN M, SUN Z H, TU W L, et al. Behaviour of recycled tyre polymer fibre reinforced concrete at elevated temperatures[J]. Cement and Concrete Composites, 2021, 124:104257.
    [15] 欧阳雪,史才军,史金华,等. 超高性能混凝土受压力学性能及其弹性模量预测[J]. 硅酸盐学报, 2021, 49(2):296-304.OUYANG Xue, SHI Caijun, Jinhua SHl, et al. Compressive mechanical properties and prediction for elastic modulus of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2):296-304. (in Chinese)
    [16] YANG Y, WU C Q, LIU Z X, et al. Experimental investigation on the dynamic behaviors of UHPFRC after exposure to high temperature[J]. Construction and Building Materials, 2019, 227:116679.
    [17] CHEN M, ZHONG H, WANG H, et al. Behaviour of recycled tyre polymer fibre reinforced concrete under dynamic splitting tension[J]. Cement and Concrete Composites, 2020, 114:103764.
    [18] SU Y, LI J, WU C, et al. Mesoscale study of steel fibre-reinforced ultra-high performance concrete under static and dynamic loads[J]. Materials and Design, 2017, 116:340-351.
    [19] GURUSIDESWAR S, SHUKLA A, JONNALAGADDA K N, et al. Tensile strength and failure of ultra-high performance concrete(UHPC) composition over a wide range of strain rates[J]. Construction and Building Materials, 2020, 258:119642.
    [20] YOO D Y, KIM S, LEE S H. Self-sensing capability of ultra-high-performance concrete containing steel fibers and carbon nanotubes under tension[J]. Sensors and Actuators A:Physical, 2018, 276:125-136.
    [21] 杜咏, 严奥宇, 戚洪辉. 纤维增强超高强混凝土防高温爆裂研究[J]. 建筑材料学报, 2021, 24(1):216-223.DU Yong, YAN Aoyu, QI Honghui. Spalling prevention of fibre reinforced ultra-high strength concrete(FRUHSC) subject to high temperature[J]. Journal of Building Materials, 2021, 24(1):216-223. (in Chinese)
    [22] ZHU Y P, HUSSEIN H, KUMAR A, et al. A review:Material and structural properties of UHPC at elevated temperatures or fire conditions[J]. Cement and Concrete Composites, 2021, 123:104212.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈猛,冯珺,张通.超高性能混凝土高温后动态劈裂抗拉性能[J].建筑材料学报,2025,28(2):118-126

复制
分享
文章指标
  • 点击次数:27
  • 下载次数: 40
  • HTML阅读次数: 1
  • 引用次数: 0
历史
  • 收稿日期:2024-02-08
  • 最后修改日期:2024-05-17
  • 在线发布日期: 2025-03-11
文章二维码