多种富钙材料的碳化性能及其关键影响因素
作者:
作者单位:

1.东南大学 材料科学与工程学院,江苏 南京 211189;2.东南大学 江苏省土木工程材料重点实验室,江苏 南京 211189;3.江苏苏博特新材料股份有限公司,江苏 南京 211103

作者简介:

张 琪(1997—),女,辽宁大连人,东南大学博士生.E-mail:230228625@seu.edu.cn

通讯作者:

冯 攀(1988—),女,重庆人,东南大学教授,博士生导师,博士.E-mail:pan.feng@seu.edu.cn

中图分类号:

TU526

基金项目:

国家自然科学基金资助项目(52122802,52078126);江苏省科技计划专项基金(前沿技术基础研究)重大项目(BK20222004);江苏省科学技术厅创新支撑计划(BZ2022036)


Carbonation Properties and Key Influencing Factors of Calcium-Rich Materials
Author:
Affiliation:

1.School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;2.Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China;3.Sobute New Materials Co., Ltd., Nanjing 211103, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过X射线衍射仪、傅里叶变换红外光谱仪和热重分析仪表征了钢渣、硅酸三钙(C3S)和电石渣3种富钙材料的固碳能力;分析了其碳化体系的pH值变化;通过扫描电子显微镜和纳米压痕仪测试了3种材料碳化前后的微观形貌和力学性能.结果表明:富钙材料的固碳能力与其化学组成,尤其是其可溶解钙有直接的关系,可溶解钙含量最高的电石渣具有最高的固碳能力;而碳化后的力学性能则取决于碳化产物的微观力学性能以及原材料与碳化产物的堆积形态,微观形貌粗糙的钢渣和C3S更易与碳化产物紧密堆积,碳化后微观力学性能增强;但碳化产物难以填充在片状的电石渣空隙中,碳化后电石渣的微观力学性能减弱.

    Abstract:

    The carbon sequestration capacity of three calcium-rich materials, namely steel slag, tricalcium silicate(C3S) and carbide slag, was characterized by X-ray diffractometer, Fourier transform infrared spectrometer and thermal gravimetric analyzer. The pH value of carbonation system was measured. The micro-morphology and mechanical properties of before and after carbonation were measured by scanning electron microscope SEM and nano-indentation. The results show that the carbon sequestration ability is directly related to the chemical composition of the materials, especially the soluble calcium content. The carbide slag with the highest soluble calcium content has the highest carbon sequestration ability. The mechanical properties after carbonation depend on the micro-mechanical properties of carbonation products and the accumulation form of raw materials and carbonation products. Steel slag and C3S with rough micro-structure are more likely to be closely packed with carbonation products, and the micro-mechanical properties are enhanced after carbonation. However, the carbonation products are difficult to fill in the void of flake carbide slag particles, hence the micro-mechanical properties of carbide slag are weakened after carbonation.

    图1 钢渣、C3S和电石渣碳化前后的XRD图谱Fig.1 XRD patterns of steel slag, C3S and carbide slag before and after carbonation
    图2 钢渣、C3S和电石渣碳化前后的FTIR光谱Fig.2 FTIR spectra of steel slag, C3S and carbide slag before and after carbonation
    图3 钢渣、C3S和电石渣碳化前后的TG/DTG曲线Fig.3 TG/DTG curves of steel slag, C3S and carbide slag before and after carbonation
    图4 去离子水、钢渣、C3S和电石渣碳化前后的pH值Fig.4 pH values of deionized water, steel slag, C3S and carbide slag before and after carbonation
    图5 碳化前后的纳米压痕测试结果Fig.5 Nanoindentation test results before and after carbonation
    表 1 钢渣、C3S和电石渣的主要化学组成Table 1 Chemical compositions(by mass) of steel slag, C3S and carbide slag
    表 2 试验分组及样品编号Table 2 Experimental groups and sample number
    表 3 碳化前钢渣、C3S和电石渣含钙矿物相的XRD定量分析结果Table 3 XRD quantitative phase analysis results(by mass) of calcium-bearing mineral phases in steel slag, C3S and carbide slag before carbonation
    表 4 碳化后钢渣、C3S和电石渣中CaCO3的XRD定量相分析结果Table 4 XRD quantitative phase analysis results(by mass) of steel slag,C3S ans carbide slag after carbonation Unit:%
    表 5 钢渣、C3S和电石渣碳化前后的SEM图像Table 5 SEM images of steel slag, C3S and carbide slag before and after carbonation
    参考文献
    [1] CHEN T F, GAO X J. Effect of carbonation curing regime on strength and microstructure of Portland cement paste[J]. Journal of CO2 Utilization, 2019, 34:74-86.
    [2] BERGER R L, YOUNG J F, LEUNG K. Acceleration of hydration of calcium silicates by carbon dioxide treatment[J]. Nature Physical Science, 1972, 240:16-18.
    [3] SAILLIO M, BAROGHEL-BOUNY V, PRADELLE S, et al. Effect of supplementary cementitious materials on carbonation of cement pastes[J]. Cement and Concrete Research, 2021, 142:106358.
    [4] 管学茂, 魏红姗, 马小娥, 等. C3S2矿物的加速碳化硬化过程[J]. 建筑材料学报, 2018, 21(6):900-905.GUAN Xuemao, WEI Hongshan, MA Xiaoe, et al. Rapid hardening process of C3S2 minerals by accelerated carbonation[J]. Journal of Building Materials, 2018, 21(6):900-905. (in Chinese)
    [5] 倪佳琪. 压实钢渣-膨润土-纤维覆盖材料防渗抗开裂试验研究[D]. 杭州:浙江大学, 2022.NI Jiaqi. Experiment study on permeability and crack resistance performance on compacted steel slag-bentonite-fibre mixtures as a cover material[D]. Hangzhou:Zhejiang University, 2022. (in Chinese)
    [6] HUMBERT P S, CASTRO-GOMES J. CO2 activated steel slag-based materials:A review[J]. Journal of Cleaner Production, 2019, 208:448-457.
    [7] LIU W Z, TENG L M, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes:A review of recent developments[J]. Chemical Engineering Journal, 2021, 416:129093.
    [8] LI C, LI Y, ZHU W H, et al. Carbon dioxide cured building materials as an approach to decarbonizing the calcium carbide related industry[J]. Renewable and Sustainable Energy Reviews, 2023, 186:113688.
    [9] ZHANG Q, FENG P, SHEN X Y, et al. Utilization of solid wastes to sequestrate carbon dioxide in cement-based materials and methods to improve carbonation degree:A review[J]. Journal of CO2 Utilization, 2023, 72:102502.
    [10] MOON E, CHOI Y C. Carbon dioxide fixation via accelerated carbonation of cement-based materials:Potential for construction materials applications[J]. Construction and Building Materials, 2019, 199:676-687.
    [11] MU Y D, LIU Z C, WANG F Z, et al. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material[J]. Construction and Building Materials, 2018, 177:322-331.
    [12] LIU P, ZHANG M, MO L W, et al. Probe into carbonation mechanism of steel slag via FIB-TEM:The roles of various mineral phases[J]. Cement and Concrete Research, 2022, 162:106991.
    [13] 秦玲, 毛星泰, 高小建, 等. 碳化养护蒸压加气混凝土改性水泥的抗硫酸盐侵蚀性能[J].建筑材料学报, 2022, 25(12) :1269-1276.QIN Ling, MAO Xingtai, GAO Xiaojian, et al. Sulfate resistance of carbonation curing autoclaved aerated concrete modified cement paste[J]. Journal of Building Materials, 2022, 25(12):1269-1276. (in Chinese)
    [14] WESSELSKY A, JENSEN O M. Synthesis of pure Portland cement phases[J]. Cement and Concrete Research, 2009, 39:973-980.
    [15] XU Z H, ZHANG Z X, HUANG J S, et al. Effects of temperature, humidity and CO2 concentration on carbonation of cement-based materials:A review[J]. Construction and Building Materials, 2022, 346:128399.
    [16] HUNTZINGER D N, GIERKE J S, KAWATRA S K, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation[J]. Environmental Science and Technology, 2009, 43:1986-1992.
    [17] SHEN P L, JIANG Y, ZHANG Y Y, et al. Production of aragonite whiskers by carbonation of fine recycled concrete wastes:An alternative pathway for efficient CO2 sequestration[J]. Renewable and Sustainable Energy Reviews, 2023, 173:113079.
    [18] SHI X C, SHUI Z H. Effect of eggshell powder addition on the properties of cement pastes with early CO2 curing and further water curing[J]. Construction and Building Materials, 2023, 404:133231.
    [19] ZHANG D, SHAO Y X. Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete[J]. Construction and Building Materials, 2016, 123:516-526.
    [20] 莫媛媛, 唐薇, 占宝剑, 等. 碳化再生微粉水泥基材料的性能及其碳足迹评价[J]. 建筑材料学报, 2023, 26(11) :1208-1213.MO Yuanyuan, TANG Wei, ZHAN Baojian, et al. Performance and carbon footprint evaluation of cement-based materials incorporating carbonated recycled fine powder[J]. Journal of Building Materials, 2023, 26(11):1208-1213. (in Chinese)
    [21] POLETTINI A, POMI R, STRAMAZZO A. Carbon sequestration through accelerated carbonation of BOF slag:Influence of particle size characteristics[J]. Chemical Engineering Journal, 2016, 298:26-35.
    [22] 蔡益栋, 贾丁, 邱峰, 等. 基于纳米压痕的煤岩微观力学特性及其影响因素剖析[J]. 煤炭学报, 2023, 48(2) :879-890.CAI Yidong, JIA Ding, QIU Feng, et al. Micromechanical properties of coal and its influencing factors based on nanoindentation[J]. Journal of China Coal Society, 2023, 48(2):879-890. (in Chinese)
    [23] 陈铁锋, 高小建. 生物炭对碳化养护水泥砂浆的改性机理[J]. 建筑材料学报, 2023, 26(8) :831-837.CHEN Tiefeng, GAO Xiaojian. Modification mechanism of biochar on carbonation-cured cement mortar[J]. Journal of Building Materials, 2023, 26(8):831-837. (in Chinese)
    [24] 何娟, 杨长辉. 碳化对碱-矿渣水泥浆体微观结构的影响[J]. 建筑材料学报, 2012, 15:126-130.HE Juan, YANG Changhui. Influence of carbonation on microstructure of alkali-activated slag cement pastes[J]. Journal of Building Materials, 2012, 15:126-130. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张琪,冯攀,沈叙言,洪锦祥.多种富钙材料的碳化性能及其关键影响因素[J].建筑材料学报,2025,28(2):153-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-03
  • 最后修改日期:2024-05-06
  • 在线发布日期: 2025-03-11
文章二维码