低碳混凝土的技术理念与途径思考
作者:
作者单位:

1.同济大学 先进土木工程材料教育部重点实验室,上海 201804;2.同济大学 材料科学与 工程学院,上海 201804

作者简介:

蒋正武(1974—),男,安徽潜山人,同济大学教授,博士生导师,博士. E-mail:jzhw@tongji.edu.cn

通讯作者:

蒋正武(1974—),男,安徽潜山人,同济大学教授,博士生导师,博士. E-mail:jzhw@tongji.edu.cn

中图分类号:

TU528.1

基金项目:

国家自然科学基金资助项目(U22B2076, 51878480, 52078369, 52102027, 22M712396);“十四五”国家重点研发计划项目(2022YFC3803104);2021年产业技术基础公共服务平台项目(2021-H029-1-1);上海市优秀学术带头人计划项目(22XD1403300);中央高校基本科研业务费专项资金资助


Technical Principles and Approaches for Low Carbon Concrete
Author:
Affiliation:

1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China;2.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    从全球碳中和与可持续混凝土发展角度阐述了低碳混凝土的基本概念及全生命周期的减碳与碳汇核心技术理念.从原材料、混凝土设计、制备、施工、服役及再生利用等全生命周期过程提出了低碳混凝土的三大技术途径——直接减碳、间接减碳及碳汇技术,并分析了每个技术途径下的具体减碳技术路线.综述了混凝土的碳排放评价方法和准则,阐释了混凝土碳排放的生命周期评价方法.提出了低碳混凝土未来的重点研究方向——开发新型胶凝材料以及碳汇技术.

    Abstract:

    From the perspective of global carbon neutrality and sustainable concrete development, the basic concept and the core technical principles of low-carbon concrete in the whole life cycle were stated. Three technical approaches for low-carbon concrete,including direct carbon reduction, indirect carbon reduction and carbon sink technology, were proposed in terms of raw materials, concrete design, preparation, construction, service and recycling throughout its whole life cycle. The specific routes of carbon reduction technology under each technology pathway were analyzed. The evaluation methods and criteria for carbon emissions of concrete were reviewed. Meanwhile, the life cycle assessment of carbon emission of concrete was explained. The key research directions of low-carbon concrete in the future were proposed,focusing on the development of new cementitious materials and carbon sink technology.

    参考文献
    [1] ZHENG C Y, ZHANG H R, CAI X R, et al. Characteristics of CO2 and atmospheric pollutant emissions from China’s cement industry: A life-cycle perspective[J]. Journal of Cleaner Production, 2020, 282:124533.
    [2] 蒋正武, 尹军. 可持续混凝土发展的技术原则与途径[J]. 建筑材料学报, 2016, 19(6):957-963.JIANG Zhengwu, YIN Jun. Technical principles and approaches for development of sustainable concrete[J]. Journal of Building Materials, 2016, 19(6):957-963. (in Chinese)
    [3] 廉慧珍, 师海霞. 混凝土是不是高能耗和高碳排放产业?[J]. 混凝土世界, 2022(3):26-31.LIAN Huizhen, SHI Haixia. Is concrete a high energy consumption and high carbon emission industry? [J]. Concrete World, 2022 (3):26-31. (in Chinese)
    [4] COFFETTI D, CROTTI E, GAZZANIGA G, et al. Pathways towards sustainable concrete[J]. Cement and Concrete Research, 2022, 154:106718.
    [5] HABERT G, MILLER S A, JOHN V M, et al. Environmental impacts and decarbonization strategies in the cement and concrete industries [J]. Nature Reviews Earth and Environment, 2020, 1(11):559-573.
    [6] 刘晶, 汪澜. 应用替代原料减少水泥行业CO2排放实例分析[J]. 新型建筑材料, 2017, 44(7):97-99.LIU Jing, WANG Lan. Instance analysis on application of alternative materials to reduce CO2 emissions from cement industry[J]. New Building Materials, 2017, 44(7):97-99. (in Chinese)
    [7] KURAMOCHI T, RAMIREZ A, TURKENBURG W, et al. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes[J]. Progress in Energy and Combustion Science, 2012, 38(1):87-112.
    [8] PLAZA M G, MARTÍNEZ S, RUBIERA F. CO2 capture, use, and storage in the cement industry:State of the art and expectations[J]. Energies, 2020, 13(21):1-28.
    [9] PÉREZ-CALVO J F, SUTTER D, MAZZOTTI M, et al. A methodology for the heuristic optimization of solvent-based CO2 capture processes when applied to new flue gas compositions:A case study of the Chilled Ammonia Process for capture in cement plants [J]. Chemical Engineering Science,2020, 8:100074.
    [10] SPINELLI M, MARTÍNEZ I, ROMANO M C. One-dimensional model of entrained-flow carbonator for CO2 capture in cement kilns by calcium looping process[J]. Chemical Engineering Science, 2018, 191:100-114.
    [11] KÁRÁSZOVÁ M, ZACH B, PETRUSOVÁ Z, et al. Post-combustion carbon capture by membrane separation[J]. Separation and Purification Technology, 2019, 238:116448.
    [12] SCRIVENER K, MARTIRENA F, BISHNOI S, et al. Calcined clay limestone cements(LC3)[J]. Cement and Concrete Research, 2018, 114:49-56.
    [13] DÍAZ Y C, BERRIEL S S, HEIERLI U, et al. Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies[J]. Development Engineering, 2017, 2:82-91.
    [14] SÁNCHEZ BERRIEl S, FAVIER A, ROSA DOMINGUEZ E, et al. Assessing the environmental and economic potential of limestone calcined clay cement in Cuba[J]. Journal of Cleaner Production, 2016, 124:361-369.
    [15] ANTONI M, ROSSEN J, MARTIRENA F, et al. Cement substitution by a combination of metakaolin and limestone[J]. Cement and Concrete Research, 2012, 42(12):1579-1589.
    [16] 董龙瑞. 钢渣少熟料水泥的制备及在混凝土中的应用[D]. 包头:内蒙古科技大学, 2020.DONG Longrui. Preparation of low-clinker cement with steel slag and application in concrete[D]. Baotou:Inner Mongolia University of Science and Technology, 2020. (in Chinese)
    [17] 鲍忠正. 赤泥基无熟料水泥的制备与应用[D].北京:中国矿业大学, 2016.BAO Zhongzheng. Study on preparation and application of non-clinker red mud cement[D]. Beijing:China University of Mining and Technology, 2016. (in Chinese)
    [18] JIANG W G, LI X G, LÜ Y, et al. Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica[J]. Construction and Building Materials, 2020, 238:117683.
    [19] 孙庆巍, 朱涵, 崔正龙. 粉煤灰少熟料水泥的制备和水化机理研究[J]. 非金属矿, 2013, 36 (2):44-47.SUN Qingwei, ZHU Han, CUI Zhenglong. Preparation and hydration mechanism of fly ash less clinker cement [J]. Nonmetallic Minerals, 2013, 36 (2):44-47. (in Chinese)
    [20] MILLER S A, MYERS R J. Environmental impacts of alternative cement binders[J]. Environmental Science and Technology, 2019, 54:677-686.
    [21] LI C, WU M X, YAO W. Effect of coupled B/Na and B/Ba doping on hydraulic properties of belite-ye’elimite-ferrite cement[J]. Construction and Building Materials, 2019, 208:23-35.
    [22] LI C, LI J Q, TELESCA A, et al. Effect of polycarboxylate ether on the expansion of ye’elimite hydration in the presence of anhydrite[J]. Cement and Concrete Research, 2021, 140:106321.
    [23] DIENEMANN W, SCHMITT D, BULLERJAHN F. Belite-calciumsulfoaluminate-ternesite(BCT)—A new low-carbon clinker technology[J]. Cement International, 2013, 11(4):100-106, 108-109.
    [24] MILLER S A, JOHN V M, PACCA S A, et al. Carbon dioxide reduction potential in the global cement industry by 2050[J]. Cement and Concrete Research, 2018, 114:115-124.
    [25] ATAKAN V, SAHU S, QUINN S, et al. Why CO2 matters—Advances in a new class of cement[J]. ZKG International, 2014, 67(3):60-63.
    [26] GARTNER E, GIMENEZ M, MEYER V, et al. A novel atmospheric pressure approach to the mineral capture of CO2 from industrial point sources[C]//13th Annual Conference on Carbon Capture, Utilization and Storage. Pittsburgh:[s.n.], 2014.
    [27] WINNEFELD F, EPIFANIA E, MONTAGNARO F, et al. Further studies of the hydration of MgO-hydromagnesite blends[J]. Cement and Concrete Research, 2019, 126:105912.
    [28] RUAN S, UNLUER C. Comparative life cycle assessment of reactive MgO and Portland cement production[J]. Journal of Cleaner Production, 2016, 137:258-273.
    [29] BADJATYA P, AKCA A H, FRAGA ALVAREZ D V, et al. Carbon-negative cement manufacturing from seawater-derived magnesium feedstocks[J]. Proceedings of the National Academy of Sciences, 2021, 119 (34):e2114680119.
    [30] SANO Y, HAO Y J, KUWAHARA F. Development of an electrolysis based system to continuously recover magnesium from seawater[J]. Heliyon, 2018, 4(11):e00923.
    [31] LI B, JIANG Z W, QIAN C, et al. Preparing Mg(OH)2-based materials by electro-deposition method from magnesium-and calcium-rich brine simulant[J]. Desalination, 2022, 527:115580.
    [32] ESMAEILKHANIAN B, KHAYAT K H, WALLEVIK O H. Mix design approach for low-powder self-consolidating concrete:Eco-SCC—Content optimization and performance[J]. Materials and Structures, 2017, 50:124.
    [33] DOMONE P L. Self-compacting concrete:An analysis of 11 years of case studies[J]. Cement and Concrete Composites, 2006, 28(2):197-208.
    [34] HÜSKEN G, BROUWERS H J C. A new mix design concept for earth-moist concrete:A theoretical and experimental study[J]. Cement and Concrete Research, 2008, 38(10):1246-1259.
    [35] RANDL N, STEINER T, OFNER S, et al. Development of UHPC mixtures from an ecological point of view[J]. Construction and Building Materials, 2014, 67:373-378.
    [36] SHOBEIRI V, BENNETT B, XIE T Y, et al. Mix design optimization of concrete containing fly ash and slag for global warming potential and cost reduction[J]. Case Studies in Construction Materials, 2023,18:01832.
    [37] PALOMOA A, GRUTZECK M W, BLANCOA M T. Alkali-activated fly ashes:A cement for the future[J]. Cement and Concrete Research, 1999, 29(8):1323-1329.
    [38] 金海东, 杨杨, 顾春平, 等. 微胶囊型自修复砂浆的制备及其性能优化[J]. 混凝土, 2019(3):124-129.JIN Haidong, YANG Yang, GU Chunping, et al. Preparation and performance optimization of self-healing mortar with microencapsules[J]. Concrete, 2019(3):124-129. (in Chinese)
    [39] 徐晶, 王先志. 低碱胶凝材料负载微生物应用于混凝土的开裂自修复[J]. 清华大学学报(自然科学版), 2019, 59(8):601-606.XU Jing, WANG Xianzhi. Self-healing of concrete cracks by microorganisms loaded in low-alkali cementitious materials[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(8):601-606. (in Chinese)
    [40] 刘围, 丁华柱, 舒杨波, 等. 自愈合/自修复混凝土研究进展[J]. 四川建材, 2020(7):1-3.LIU Wei, DING Huazhu, SHU Yangbo, et al. Research progress of self-healing/self-healing concrete[J]. Sichuan Building Materials, 2020(7):1-3. (in Chinese)
    [41] MILLER S A. The role of cement service-life on the efficient use of resources[J]. Environmental Research Letters, 2020, 15:024004.
    [42] LAURENTE R D, ZACCARDI Y A V, ZEGA C J, et al. Recycled powder as filler admixture in cementitious systems:Production and characterization[C]//Proceedings of the 6th Amazon & Pacific Green Materials Congress and Sustainable Construction Materials LAT-RILEM Conference. Cali:Sustainable Materials for A Living World, 2016.
    [43] KWON E, AHN J, CHO B, et al. A study on development of recycled cement made from waste cementitious powder[J]. Construction and Building Materials, 2015, 83:174-180.
    [44] SNELLINGS R, SCHEPPER M, BUYSSER K, et al. Clinkering reactions during firing of recyclable concrete[J]. Journal of the American Ceramic Society, 2012, 95(5):1741-1749.
    [45] SCHEPPER M D, HEEDE P V D, DRIESSCHE V, et al. Life cycle assessment of completely recyclable concrete[J]. Materials, 2014, 7:6010-6027.
    [46] EKOLU S O. A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete[J]. Construction and Building Materials, 2016, 127:306-320.
    [47] LI C, CHEN Q, WANG R L, et al. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels:Theoretical insights and practical data interpretations[J]. Cement and Concrete Composites, 2020, 112:103652.
    [48] MAHOUTIAN M, SHAO Y X. Production of cement-free construction blocks from industry wastes[J]. Journal of Cleaner Production, 2016, 137:1339-1346.
    [49] HIGUCHI T, MORIOKA M, YOSHIOKA I, et al. Development of a new ecological concrete with CO2 emissions below zero[J]. Construction and Building Materials, 2014, 67:338-343.
    [50] YOSHIOKA K, OBATA D, NANJO H, et al. New ecological concrete that reduces CO2 emissions below zero level new method for CO2 capture and storage[J]. Energy Procedia, 2013, 37:6018-6025.
    [51] MILLER S A, MONTEIRO P J M, OSTERTAG C P, et al. Concrete mixture proportioning for desired strength and reduced global warming potential[J]. Construction and Building Materials, 2016, 128:410-421.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋正武,高文斌,杨巧,李晨,任强.低碳混凝土的技术理念与途径思考[J].建筑材料学报,2023,26(11):1143-1150

复制
分享
文章指标
  • 点击次数:303
  • 下载次数: 857
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2023-03-16
  • 最后修改日期:2023-04-25
  • 在线发布日期: 2024-01-26
文章二维码