基于声发射技术的早龄期混凝土断裂性能
作者:
作者单位:

1.南京水利科学研究院 水文水资源与水利工程科学国家重点实验室,江苏 南京 210029;2.水安全与水科学协同创新中心,江苏 南京 210024

作者简介:

范向前(1982—),男,河南登封人,南京水利科学研究院正高级工程师,博士. E-mail:xqfan@nhri.cn

通讯作者:

范向前(1982—),男,河南登封人,南京水利科学研究院正高级工程师,博士. E-mail:xqfan@nhri.cn

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(52171270,51879168);国家自然科学基金委-区域创新发展联合基金重点资助项目(U23A20672);黄河水科学研究联合基金资助项目(U2243223)


Fracture Performance of Early-Age Concrete Based on Acoustic Emission Measurement
Author:
Affiliation:

1.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China;2.Cooperative Innovation Center for Water Safety & Hydro Science,Nanjing 210024, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究早龄期混凝土的断裂性能,针对5种养护龄期(3、7、14、21、28 d)的混凝土试件,开展20根含预制裂缝的三点弯曲梁断裂试验,得到其荷载-裂缝口张开位移(P-CMOD)曲线.基于该曲线,计算得到早龄期混凝土的断裂韧度(起裂韧度和失稳韧度)和断裂能.采用声发射(AE)技术,通过振铃计数和累计振铃计数与时间的关系曲线,探讨养护龄期对早龄期混凝土试件损伤断裂过程的影响;通过计算上升角(RA)和平均频率(AF),分析了早龄期混凝土的破坏模式.结果表明:早龄期混凝土的断裂韧度和断裂能均随着养护龄期的增加而增大,抗开裂能力提高,延性变差.当养护龄期由3 d增至14 d时,混凝土的断裂韧度和断裂能增速较快;当养护龄期由14 d增至28 d时,混凝土的断裂韧度和断裂能增速变缓.振铃计数和累计振铃计数均能较好地反映早龄期混凝土的损伤破坏过程,其中累计振铃计数的增速随着养护龄期的增加而减小.混凝土的剪切裂缝占总裂缝的比例随着养护龄期的增加而增加.

    Abstract:

    In order to explore the fracture performance of early-age concrete, 20 three-point bending beam fracture tests with precast cracks were carried out for concrete specimens of 5 different curing ages (3 , 7, 14, 21, 28 d) to obtain their load-crack mouth opening displacement (P-CMOD) curves. Based on these curves, the fracture toughness (crack initiation toughness and unstable toughness) and fracture energy of early-age concrete were calculated. The effect of the curing age on the damage fracture process of early-age concrete specimens was investigated by using the acoustic emission (AE) technique through the curves of ringing counts and cumulative ringing counts versus time. The failure mode of early-age concrete was analyzed by calculating the rise angle (RA) and average frequency (AF). The results show that the fracture toughness and fracture energy of early-age concrete increase with the increases of curing age, the cracking resistance improves and the ductility deteriorates. The growth rate of concrete fracture toughness and fracture energy are faster from 3 d to 14 d, while the growth rate of concrete fracture toughness and fracture energy are slower from 14 d to 28 d. Both ringing counts and cumulative ringing counts can reflect the damage and failure process of concrete in early age. The growth rate of cumulative ringing counts decreases with the increases of curing age. The proportion of shear cracks to total cracks increases with the increases of curing age.

    图1 早龄期混凝土试件尺寸示意图Fig.1 Dimensional diagram of early-age concrete specimen(size:mm)
    图2 早龄期混凝土的尾部断裂能计算示意图Fig.2 Schematic diagram of tail fracture energy calculation of early-age concrete
    图3 早龄期混凝土的P-CMOD曲线Fig.3 P-CMOD curves of early-age concretes
    图4 早龄期混凝土的起裂荷载与失稳荷载随养护龄期的变化Fig.4 Variation of cracking load and instability load of early-age concretes with curing age
    图5 早龄期混凝土起裂荷载与失稳荷载的比值变化Fig.5 Change in the ratio of cracking load to instability load of early-age concretes
    图6 早龄期混凝土的起裂韧度和失稳韧度Fig.6 Crack initiation toughness and unstable toughness of early-age concretes
    图7 早龄期混凝土的断裂能Fig.7 Fracture energy of early-age concretes
    图8 早龄期混凝土振铃计数和累计振铃计数与时间的关系曲线Fig.8 Ringing count and cumulative ringing count with time of early-age concrete specimens at different curing ages
    图9 早龄期混凝土RA-AF的关系曲线Fig.9 Relation curves of RA-AF of early-age concretes at different curing ages
    参考文献
    [1] NEHDI M, SOLIMAN A M. Early-age properties of concrete: Overview of fundamental concepts and state-of-the-art research[J]. Construction Materials, 2011, 164(2):57-77.
    [2] 侯东伟, 张君. 早龄期混凝土全变形曲线的试验测量与分析[J]. 建筑材料学报, 2010, 13(5):613-619.HOU Dongwei, ZHANG Jun. Experimental measurement and analysis of overall deformation of concrete at early-age[J]. Journal of Building Materials, 2010, 13(5):613-619. (in Chinese)
    [3] LAWRENCE A M, TIA M, FERRARO C C, et al. Effect of early age strength on cracking in mass concrete containing different supplementary cementitious materials:Experimental and finite-element investigation[J]. Journal of Materials in Civil Engineering, 2012, 24(4):362-372.
    [4] MAO J W, LIANG N H, LIU X R, et al. Investigation on early-age cracking resistance of basalt-polypropylene fiber reinforced concrete in restrained ring tests[J]. Journal of Building Engineering, 2023,70:106155.
    [5] 陈波, 蔡跃波, 丁建彤, 等. 基于温度应力试验的早龄期混凝土弹性模量量测[J]. 建筑材料学报, 2016, 19(4):785-790.CHEN Bo, CAI Yuebo, DING Jiantong, et al. Measurement of early age concrete elastic modulus based on thermal stress test[J]. Journal of Building Materials ,2016, 19(4):785-790. (in Chinese)
    [6] 王世鸣, 李夕兵, 宫凤强, 等. 静载和动载下不同龄期混凝土力学特性的试验研究[J]. 工程力学, 2013, 30(2):143-149.WANG Shiming, LI Xibing, GONG Fengqiang, et al. Experimental study on mechanical properties of concrete at different ages under static and dynamic load[J]. Engineering Mechanics, 2013, 30(2):143-149. (in Chinese)
    [7] MATALLAH M, FARAH M, GRONDIN F, et al. Size-independent fracture energy of concrete at very early ages by inverse analysis[J]. Engineering Fracture Mechanics, 2013, 109:1-16.
    [8] NIKBIN I M, RAHIMI S, ALLAHYARI H. A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network[J]. Engineering Fracture Mechanics, 2017, 186:466-482.
    [9] ABOLHASANI A, NAZARPOUR H, DEHESTANI M. The fracture behavior and microstructure of calcium aluminate cement concrete with various water-cement ratios [J]. Theoretical and Applied Fracture Mechanics, 2020, 109:102690.
    [10] 张廷毅, 高丹盈, 郑光和, 等. 三点弯曲下混凝土断裂韧度及影响因素[J]. 水利学报, 2013, 44(5):601-607.ZHANG Tingyi, GAO Danying, ZHENG Guanghe, et al. Fracture toughness of concrete and influencing factors under three-point bending[J]. Journal of Hydraulic Engineering, 2013, 44(5):601-607. (in Chinese)
    [11] 范向前, 胡少伟, 朱海堂,等. 非标准钢筋混凝土三点弯曲梁双K断裂特性[J]. 建筑材料学报, 2015, 18(5):733-736.FAN Xiangqian, HU Shaowei, ZHU Haitang, et al. Double-K fracture characteristics of three point bending beams of non-standard reinforced concrete[J]. Journal of Building Materials, 2015, 18(5):733-736. (in Chinese)
    [12] 王治, 金贤玉, 田野, 等. 基于双G准则的掺粉煤灰砼断裂性能研究[J]. 湖南大学学报(自然科学版), 2012, 39(3):17-22.WANG Zhi, JIN Xianyu, TIAN Ye, et al. Research on fracture characteristic of fly ash concrete based on dual-G criterion[J]. Journal of Hunan University (Natural Sciences) , 2012, 39(3):17-22. (in Chinese)
    [13] LACIDOGNA G, PIANA G, CARPINTERI A. Damage monitoring of three-point bending concrete specimens by acoustic emission and natural frequency analysis[J]. Engineering Fracture Mechanics, 2018, 210:203-211.
    [14] HU S W, LU J, XIAO F P. Evaluation of concrete fracture procedure based on acoustic emission parameters[J]. Construction and Building Materials, 2013, 47:1249-1256.
    [15] KRAVCHUK R, LANDIS E N. Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete[J].Construction and Building Materials,2018, 176, 531-538.
    [16] HAN Q H, YANG G, XU J, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests[J]. Engineering Fracture Mechanics, 2018, 210:189-202.
    [17] CHEN C, FAN X Q, CHEN X D. Experimental investigation of concrete fracture behavior with different loading rates based on acoustic emission[J]. Construction and Building Materials, 2020,237:117472.
    [18] 张秀芳, 徐世烺. 采用荷载-裂缝张开口位移曲线确定混凝土三点弯曲梁的断裂能[J]. 水利学报, 2008, 39(6):714-719.ZHANG Xiufang, XU Shilang. Determination of fracture energy of three-point bending concrete beam usino relationship between load and crack-mouth opening displacement[J]. Journal of Hydraulic Engineering, 2008, 39(6):714-719. (in Chinese)
    [19] 徐慧颖, 卜静武, 吴新宇. 不同缝高比大坝混凝土断裂性能及声发射特性[J]. 水电能源科学, 2022, 40(3):100-104.XU Huiying, BU Jingwu, WU Xinyu. Fracture performance and acoustic emission characteristics of dam concrete with different crack-depth ratios[J]. Water Resources and Power, 2022, 40(3):100-104. (in Chinese)
    [20] ULFKJAER J P, KRENK S, BRINCKER R. Analytical model for fictitious crack propagation in concrete beams[J]. Journal of Engineering Mechanics, 1995, 121(1):7-15.
    [21] 张志刚, 尹志伟, 秦凤江. 低模量早强型高延性混凝土的力学行为[J]. 建筑材料学报, 2019, 22(5):707-713.ZHANG Zhigang, YIN Zhiwei, QIN Fengjiang. Mechanical performance of engineered cementitious composites(ECC) with low modulus and early strength[J]. Journal of Building Materials,2019, 22(5):707-713. (in Chinese)
    [22] YANG L Y, XIE H Z, ZHANG D B , et al. Acoustic emission characteristics and crack resistance of basalt fiber reinforced concrete under tensile load[J]. Construction and Building Materials, 2021, 312:125442.
    [23] 陈徐东, 黄业博, 陈晨. 橡胶自密实混凝土断裂性能及声发射特征[J]. 建筑材料学报, 2021, 24(4):758-765.CHEN Xudong, HUANG Yebo, CHEN Chen. Fracture properties and acoustic emission characteristics of rubber self-compacting concrete[J]. Journal of Building Materials, 2021, 24(4):758-765. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范向前,葛菲.基于声发射技术的早龄期混凝土断裂性能[J].建筑材料学报,2024,27(2):153-160

复制
分享
文章指标
  • 点击次数:192
  • 下载次数: 412
  • HTML阅读次数: 30
  • 引用次数: 0
历史
  • 收稿日期:2023-03-06
  • 最后修改日期:2023-05-08
  • 在线发布日期: 2024-02-29
文章二维码