钢筋混凝土结构锈蚀特征的漏磁探测研究进展
作者:
作者单位:

1.同济大学 工程结构性能演化与控制教育部重点实验室,上海 200092;2.同济大学 土木工程学院,上海 200092

作者简介:

张伟平(1973—),男,浙江金华人,同济大学教授,博士生导师,博士.E-mail:weiping_zh@tongji.edu.cn

通讯作者:

张伟平(1973—),男,浙江金华人,同济大学教授,博士生导师,博士.E-mail:weiping_zh@tongji.edu.cn

中图分类号:

TU411

基金项目:

上海市2022年度“科技创新行动计划”社会发展科技攻关项目(22dz1203603)


State-of-the-Art on Magnetic Flux Leakage Detection of Corrosion Characteristics of Reinforced Concrete Structures
Author:
Affiliation:

1.Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education, Tongji University, Shanghai 200092, China;2.College of Civil Engineering, Tongji University, Shanghai 200092, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [92]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以混凝土结构中钢筋锈蚀特征的漏磁探测技术为主线,对相关研究进行综合回顾与分析.结果表明,基于漏磁探测技术能够准确识别混凝土结构中钢筋的锈蚀区域并定量评估钢筋锈蚀率.为进一步提升利用漏磁技术探测既有钢筋混凝土结构锈蚀特征的适用性和准确性,未来还需要充分考虑磁化强度随机分布引起的锈蚀率评估结果的概率分布特性,明确应力、疲劳、箍筋/相邻纵筋、锈蚀产物和混凝土的影响,推动基于漏磁成像的计算机视觉自动识别和融合多指标、多技术方法的应用.

    Abstract:

    The main focus is the state-of-the-art magnetic flux leakage (MFL) detection technique for rebar corrosion characteristics in reinforced concrete (RC) structures, providing a comprehensive analysis of relevant research. The results indicate that the MFL detection technique can accurately identify corrosion areas of rebar embedded in RC structures and quantitative assessment the corrosion degree of the rebar. To further improve the applicability and accuracy of using the MFL detection technique for corrosion characteristics in existing RC structures, the probabilistic distribution characteristics of corrosion degree assessments resulting from the random distribution of magnetization should be fully considered, the effects of stress, fatigue, stirrups/adjacent longitudinal rebars, corrosion products, and concrete should be clarified, and the application of computer vision for automatic identification based on MFL imaging and the integration of multiple indicators and methodologies needed be promoted.

    表 1 基于漏磁量化指标的锈蚀率概率量化评估Table 1 Probabilistic assessment of corrosion degree η based on MFL quantification indices
    图1 钢筋局部锈蚀的漏磁特征Fig.1 MFL characteristics of rebar’s local corrosion [5, 20-23, 43]
    图2 钢筋锈蚀漏磁变幅(归一化漏磁变幅)与锈蚀率的典型线性关系及其线性增长速率Fig.2 Typical linear relationships between MFL variation amplitude(normalized MFL variation amplitude) and corrosion degree and linear growth rates [5,21,22,28-31,34,37,39,44,50,52,57-76]
    图3 漏磁量化处理和钢筋锈蚀率分级评估结果Fig.3 Quantification of MFL and classification of rebar corrosion degree [75-76]
    图4 基于锈胀裂缝宽度的混凝土锈蚀梁抗弯承载力概率分布估计Fig.4 Probability distribution estimation of flexural capacity of corrooded RC beam based on corrosion crack width [18]
    图5 应力、疲劳、箍筋/相邻纵筋、锈蚀产物和混凝土对锈蚀钢筋漏磁的影响Fig.5 Effects of stress,fatigue,stirrups/adjacent steel bars,rust products,and concrete on MFL of corroded rebar [21,28,56-57,84]
    图6 建议的钢筋锈蚀特征漏磁探测评估流程Fig.6 Proposed process for MFL-based detection and assessment of rebar’s corrosion characteristics
    参考文献
    [1] 高玉军, 邓翀, 秦明强, 等. 铁路隧道C30早高强喷射混凝土试验研究与应用[J]. 建筑材料学报, 2023, 26(9):1011-1022.GAO Yujun, DENG Chong, QIN Mingqiang. Experimental research and application of C30 early and high-strength shotcrete in railway tunnel[J]. Journal of Building Materials, 2023, 26(9):1011-1022. (in Chinese)
    [2] 王之龙, 刘伊生, 邵高峰. 基于普查数据的我国城市建筑物质存量动态演化研究[J]. 建筑科学, 2020, 36(增刊2):339-344.WANG Zhilong, LIU Yisheng, SHAO Gaofeng. Research on the dynamic evolution of building stock in China[J]. Building Science, 2020, 36(Suppl 2):339-344. (in Chinese)
    [3] JIANG C, GU X L, HUANG Q H, et al. Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads[J]. Cement and Concrete Composites, 2018, 93:140-154.
    [4] JIANG C, SONG C, GU X L, et al. Modeling electrochemical chloride extraction process in cement-based materials considering coupled multi-ion transports and thermodynamic equilibriums[J]. Journal of Cleaner Production, 2023, 401:136778.
    [5] QIU J L, ZHANG H, ZHOU J T, et al. Experimental analysis of the correlation between bending strength and SMFL of corroded RC beams[J]. Construction and Building Materials, 2019, 214:594-605.
    [6] ZHANG W P, QIU J L, ZHAO C L, et al. Structural performance of corroded precast concrete tunnel lining[J]. Tunnelling and Underground Space Technology, 2022, 128:104658.
    [7] GU X L, GUO H Y, ZHOU B B, et al. Corrosion non-uniformity of steel bars and reliability of corroded RC beams[J]. Engineering Structures, 2018, 167:188-202.
    [8] 孙佳, 金祖权, 秦一琦. 钢筋非均匀锈蚀与混凝土开裂试验及数值模拟[J]. 建筑材料学报, 2024, 27(4):309-319.SUN Jia, JIN Zuquan, QIN Yiqi. Experimental and numerical simulation on non-uniform corrosion of steel bar and concrete cracking[J]. Journal of Building Materials, 2024, 27(4):309-319. (in Chinese)
    [9] 尚明刚, 张云升, 何忠茂, 等. 盐渍土环境下钢筋混凝土恒电流加速锈蚀试验及可靠性分析[J]. 建筑材料学报, 2022, 25(7):751-759.SHANG Minggang, ZHANG Yunsheng, HE Zhongmao, et al. Constant current accelerated corrosion test and reliability analysis of reinforced concrete in saline soil environment[J]. Journal of Building Materials, 2022, 25(7):751-759. (in Chinese)
    [10] RAUPACH M. Models for the propagation phase of reinforcement corrosion—An overview[J]. Materials and Corrosion, 2006, 57(8):605-613.
    [11] YU Y G, GAO W, CASTEL A, et al. Modelling steel corrosion under concrete non-uniformity and structural defects[J]. Cement and Concrete Research, 2020, 135:106109.
    [12] BUI H T, MAEKAWA K, TAN K H. Microcell and macrocell corrosion of steel bars in reinforced concrete slabs under different corrosive environments and cathode/anode configurations[J]. Cement and Concrete Composites, 2023, 138:104989.
    [13] RODULFO P, WANG B Y, GUPTA R, et al. Relationship between electrical conductivity, half cell potential, linear polarization resistance and macrocell current of cementitious repair materials[J]. Construction and Building Materials, 2023, 401:132733.
    [14] ZHANG L, NIU D T, WEN B, et al. Initial-corrosion condition behavior of the Cr and Al alloy steel bars in coral concrete for marine construction[J]. Cement and Concrete Composites, 2021, 120:104051.
    [15] YU A P, NAQVI M W, HU L B, et al. An experimental study of corrosion damage distribution of steel bars in reinforced concrete using acoustic emission technique[J]. Construction and Building Materials, 2020, 254:119256.
    [16] FAN L, TAN X, ZHANG Q H, et al. Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor[J]. Engineering Structures, 2020, 204:110039.
    [17] SOLLA M, LAGÜELA S, FERNÁNDEZ N, et al. Assessing rebar corrosion through the combination of nondestructive GPR and IRT methodologies[J]. Remote Sensing, 2019, 11(14):1705.
    [18] ZHANG M Y, AKIYAMA M, SHINTANI M, et al. Probabilistic estimation of flexural loading capacity of existing RC structures based on observational corrosion-induced crack width distribution using machine learning[J]. Structural Safety, 2021, 91:102098.
    [19] 全国无损检测标准化技术委员会. 无损检测 漏磁检测 总则:GB/T 31212—2014 [S]. 北京:中国标准出版社, 2015.National Technical Committee 56 on Non-destructive testing of standardization Administration of China. Non-destructive testing―Magnetic flux leakage testing―General principles:GB/T 31212—2014[S]. Beijing:Standards Press of China, 2015. (in Chinese)
    [20] 叶华睿. 电力基础设施钢筋砼中钢筋锈蚀的磁感应检测方法与实验研究[D]. 重庆:重庆大学, 2022.YE Huarui. Magnetic induction detection method and experimental study of rebar corrosion in reinforced concrete of power infrastructure [D]. Chongqing:Chongqing University, 2022. (in Chinese)
    [21] GHORBANPOOR A, SHI S. Assessment of corrosion of steel in concrete structures by magnetic based NDE techniques[C]// Proceeding of the 1994 Symposium on Techniques to Access the Corrosion Activity of Steel Reinforced Concrote. Philadelphia:ASTM International, 1996:117-131.
    [22] ZHOU J T, QIU J L, ZHOU Y X, et al. Experimental study on residual bending strength of corroded reinforced concrete beam based on micromagnetic sensor[J]. Sensors, 2018, 18(8):2635.
    [23] SHAMS S, GHORBANPOOR A, LIN S, et al. Nondestructive testing of steel corrosion in prestressed concrete structures using the magnetic flux leakage system[J]. Transportation Research Record, 2018, 2672(41):132-144.
    [24] YE H R, ZHANG Z L, DAN Y H, et al. Novel method for measurement of rebar state of cement tower[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1-8.
    [25] 杨茂, 周建庭, 张洪, 等. 混凝土内部钢筋锈蚀的磁记忆检测[J]. 建筑材料学报, 2018,21(2):345-350.YANG Mao, ZHOU Jianting, ZHANG Hong, et al. Magnetic memory detection of rebar corrosion in concrete[J]. Journal of Building Materials, 2018, 21(2):345-350. (in Chinese)
    [26] 周建庭, 张森华, 张洪, 等. 混凝土内锈蚀钢筋的漏磁信号分析[J]. 江苏大学学报(自然科学版), 2019, 40(3):355-359.ZHOU Jianting, ZHANG Senhua, ZHANG Hong, et al. Magnetic flux leakage signal analysis of corroded reinforcing bar in concrete[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(3):355-359. (in Chinese)
    [27] 张爽. 基于磁记忆效应的RC梁内部钢筋损伤检测研究[D]. 济南:鲁东大学, 2019.ZHANG Shuang. Research on internal reinforcement damage detection of RC beam based on magnetic memory effect[D]. Jinan:Ludong University, 2019. (in Chinese)
    [28] 张元恒. 基于金属磁记忆的钢筋混凝土结构锈蚀度检测技术研究[D]. 重庆:重庆交通大学, 2020.ZHANG Yuanheng. Research on corrosion degree detection technology of reinforced concrete structure based on metal magnetic memory[D]. Chongqing:Chongqing Jiaotong University, 2020. (in Chinese)
    [29] 赵亚宇. 基于金属磁记忆漏磁特性的钢绞线锈蚀度检测试验研究[D]. 重庆:重庆交通大学, 2021.ZHAO Yayu. Experimental research on corrosion degree detection of steel strand based on magnetic flux leakage characteristics of metal magnetic memory [D]. Chongqing:Chongqing Jiaotong University, 2021. (in Chinese)
    [30] 周建庭, 夏乾文, 杨茂, 等. 基于自发漏磁效应的钢筋锈蚀分级评估研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(10):93-99.ZHOU Jianting, XIA Qianwen, YANG Mao, et al. Grading assessment of steel corrosion based on spontaneous magnetic flux leakage effect [J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(10):93-99. (in Chinese)
    [31] 邱俊澧, 周建庭, 廖棱, 等. 锈蚀钢筋混凝土梁受弯承载力与自发漏磁相关性试验研究[J]. 建筑结构学报, 2020, 41(9):127-136.QIU Junli, ZHOU Jianting, LIAO Leng, et al. Experimental study on correlation between bending capacity and self-magnetic flux leakage of corroded RC beams [J]. Journal of Building Structures, 2020, 41(9):127-136. (in Chinese)
    [32] AZARI H, GHORBANPOOR A, SHAMS S. Development of robotic nondestructive testing of steel corrosion of prestressed concrete bridge girders using magnetic flux leakage system[J]. Transportation Research Record, 2020, 2674(8):466-476.
    [33] SUN Y H, LIU S W, DENG Z Y, et al. Magnetic flux leakage structural health monitoring of concrete rebar using an open electromagnetic excitation technique[J]. Structural Health Monitoring, 2018, 17(2):121-134.
    [34] LO C C H, NAKAGAWA N. Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrier rails[C]// AIP Conference Proceedings. Colorado:American Institute of Physics, 2013, 1511(1):1371-1377.
    [35] ZHANG H, MA X T, JIANG H J, et al. Grading evaluation of overall corrosion degree of corroded RC beams via SMFL technique[J]. Structural Control and Health Monitoring, 2023, 2023:672823.
    [36] CHEN L, LIU X L, LIN Y F, et al. Quantitative corrosion detection of reinforced concrete based on self-magnetic flux leakage and rust spot area[J]. Engineering Research Express, 2022, 4(3):035063.
    [37] XIA R C, ZHANG H, ZHOU J T, et al. Corrosion non-destructive testing of loaded steel strand based on self-magnetic flux leakage effect[J]. Nondestructive Testing and Evaluation, 2022, 37(1):56-70.
    [38] DIEDERICH H, VOGEL T. Evaluation of reinforcing bars using the magnetic flux leakage method[J]. Journal of Infrastructure Systems, 2017, 23(1):B4016001.
    [39] ELYASIGORJI A, REZAEE M, GHORBANPOOR A. Characterization of corrosion in PS concrete girders by correlation analysis[C]// Structures Congress 2020. Reston:American Society of Civil Engineers, 2020:285-292.
    [40] BEKTAŞ Ö, KURBAN Y C, ÖZBOYLAN B. Development of magnetic flux leakage device as a nondestructive method for structural reinforcement detection[J]. Materiales de Construcción, 2022, 72(345):02421.
    [41] MAHBAZ S B, DUSSEAULT M B, CASCANTE G, et al. Detecting defects in steel reinforcement using the passive magnetic inspection method[J]. Journal of Environmental & Engineering Geophysics, 2017, 22(2):153-166.
    [42] MIETZ J, FISCHER J. Evaluation of NDT methods for detection of prestressing steel damage at post-tensioned concrete structures[J]. Materials and Corrosion, 2007, 58(10):789-794.
    [43] QU Y H, ZHANG H, ZHAO R Q, et al. Research on the method of predicting corrosion width of cables based on the spontaneous magnetic flux leakage[J]. Materials, 2019, 12(13):2154.
    [44] ZHAO Q Y, ZHOU J T, XIA Q W, et al. Non-destructive testing of steel corrosion fluctuation parameters based on spontaneous magnetic flux leakage and its relationship with steel bar diameter[J]. Materials, 2019, 12(24):4116.
    [45] ZHANG H, ZHOU J T, ZHAO R Q, et al. Experimental study on detection of rebar corrosion in concrete based on metal magnetic memory[J]. International Journal of Robotics & Automation, 2017, 32:530-537.
    [46] FERNANDES B, TITUS M, NIMS D K, et al. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge[J]. Nondestructive Testing and Evaluation, 2013, 28(2):99-118.
    [47] XIA R C, ZHOU J T, ZHANG H, et al. Experimental study on corrosion of unstressed steel strand based on metal magnetic memory[J]. KSCE Journal of Civil Engineering, 2019, 23:1320-1329.
    [48] YANG M, ZHOU J T, ZHAO Q Y, et al. Quantitative detection of corroded reinforced concrete of different sizes based on SMFL[J]. KSCE Journal of Civil Engineering, 2022, 26(1):143-154.
    [49] FERNANDES B, NIMS D, DEVABHAKTUNI V. Comprehensive MMF-MFL inspection for corrosion detection and estimation in embedded prestressing strands[J]. Journal of Civil Structural Health Monitoring, 2014, 4:43-55.
    [50] LI B A, LI S D, ZHANG G Z, et al. Grading assessment of steel bar corrosion in concrete structures based on naive Bayesian model and spontaneous magnetic flux leakage effect[J]. Journal of Engineering and Applied Science, 2023, 70(1):3.
    [51] ZHANG H, LIAO L, ZHAO R Q, et al. The non-destructive test of steel corrosion in reinforced concrete bridges using a micro-magnetic sensor[J]. Sensors, 2016, 16(9):1439.
    [52] XIA R C, ZHOU J T, ZHANG H, et al. Quantitative study on corrosion of steel strands based on self-magnetic flux leakage[J]. Sensors, 2018, 18(5):1396.
    [53] YANG D, QIU J L, DI H B, et al. Quantitative evaluation of corrosion degrees of steel bars based on self-magnetic flux leakage[J]. Metals, 2019, 9(9):952.
    [54] MOSHARAFI M, MAHBAZ S B, DUSSEAULT M B. Simulation of real defect geometry and its detection using passive magnetic inspection (PMI) method[J]. Applied Sciences, 2018, 8(7):1147.
    [55] MOSHARAFI M, MAHBAZ S B, DUSSEAULT M B, et al. Magnetic detection of corroded steel rebar:Reality and simulations[J]. NDT & E International, 2020, 110:102225.
    [56] QIU J L, ZHANG W P, JING Y. Quantitative linear correlation between self-magnetic flux leakage field variation and corrosion unevenness of corroded rebars[J]. Measurement, 2023, 118:113173.
    [57] 李贤康. 基于磁场理论的钢筋锈蚀监测仪的工作机理与研发[D]. 杭州:浙江大学, 2021.LEI Xiankang. Working mechanism and R&D of reinforcement corrosion monitor based on magnetic field theory [D]. Hangzhou:Zhejiang University, 2021. (in Chinese)
    [58] LEI I, JIN X Y, TIAN Y, et al. Numerical simulation of a magnetic corrosion detector for corrosion detection of steel rebar in concrete[J]. Journal of Civil Structural Health Monitoring, 2022, 12:1-14.
    [59] 吴昱劼. 基于磁场梯度张量的桥梁索结构腐蚀损伤测试方法研究[D]. 重庆:重庆交通大学, 2020.WU Yujie. Research on corrosion damage testing method of bridge cable structure based on magnetic field gradient tensor [D]. Chongqing:Chongqing Jiaotong University, 2020. (in Chinese)
    [60] 吉祥, 周建庭, 张洪, 等. 基于金属磁记忆的钢筋混凝土结构锈蚀检测[J]. 混凝土, 2019(6):151-155.JI Xiang, ZHOU Jianting, ZHANG Hong, et al. Corrosion detection of reinforced concrete structures based on metal magnetic memory[J]. Concrete, 2019(6):151-155. (in Chinese)
    [61] 张凯. 基于弱磁效应腐蚀钢筋混凝土结构疲劳裂纹扩展行为研究[D]. 杭州:浙江大学, 2023.ZHANG Kai. Study on fatigue crack growth behavior of corroded reinforced concrete structure on weak magnetic effect [D]. Hangzhou:Zhejiang University, 2023. (in Chinese)
    [62] FU C Q, HUANG J H, DONG Z, et al. Experimental and numerical study of an electromagnetic sensor for non-destructive evaluation of steel corrosion in concrete[J]. Sensors and Actuators A:Physical, 2020, 315:112371.
    [63] ZHANG J R, LIU C, SUN M, et al. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors[J]. Construction and Building Materials, 2017, 135:68-75.
    [64] MOSHARAFI M, MAHBAZ S B, DUSSEAULT M B. Statistical methods to assess the reliability of magnetic data recorded over steel corrosion sites[J]. Construction and Building Materials, 2020, 264:120260.
    [65] LI Z, JIN Z Q, GAO Y, et al. Coupled application of innovative electromagnetic sensors and digital image correlation technique to monitor corrosion process of reinforced bars in concrete[J]. Cement and Concrete Composites, 2020, 113:103730.
    [66] LI Z, JIN Z Q, XU X B, et al. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete[J]. Construction and Building Materials, 2020, 245:118472.
    [67] FERNANDES B, WADE J D, NIMS D K, et al. A new magnetic sensor concept for nondestructive evaluation of deteriorated prestressing strand[J]. Research in Nondestructive Evaluation, 2012, 23(1):46-68.
    [68] ELYASIGORJI A, REZAEE M, GHORBANPOOR A. Magnetic corrosion detection in concrete structures[C]// International Conference on Sustainable Infrastructure 2019. Reston:American Society of Civil Engineers, 2019:175-184.
    [69] HUANG J H, DONG Z, FU C Q, et al. Evaluation of nonuniform corrosion of steel in concrete based on two-yoke magnetic sensor[J]. Journal of Materials in Civil Engineering, 2022, 34(9):04022204.
    [70] ELYASIGORJI A. MFL-based detection of flaws of pre-stressed concrete girders[D]. Wisconsin:The University of Wisconsin-Milwaukee, 2021.
    [71] FERNANDES B, NIMS D, DEVABHAKTUNI V. Computer aided modeling of magnetic behavior of embedded prestressing strand for corrosion estimation[J]. Journal of Nondestructive Evaluation, 2013, 32:124-133.
    [72] RUMICHE F, INDACOCHEA J E, Wang M L. Assessment of the effect of microstructure on the magnetic behavior of structural carbon steels using an electromagnetic sensor[J]. Journal of Materials Engineering and Performance, 2008, 17:586-593.
    [73] YOUSAF J, HARSENO R W, KEE S H, et al. Evaluation of the size of a defect in reinforcing steel using magnetic flux leakage (MFL) measurements[J]. Sensors, 2023, 23(12):5374.
    [74] 李哲, 金祖权, 邵爽爽, 等. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23):4170-4181.LI Zhe, JIN Zuquan, SHAO Shuangshuang, et al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment [J]. Materials Reports, 2018, 32(23):4170-4181. (in Chinese)
    [75] QIU J L, ZHANG H, ZHOU J T, et al. An SMFL-based non-destructive quantification method for the localized corrosion cross-sectional area of rebar[J]. Corrosion Science, 2021, 192:109793.
    [76] XIA R C, ZHANG H, ZHOU J T, et al. Probability evaluation method of cable corrosion degree based on self-magnetic flux leakage[J]. Journal of Magnetism and Magnetic Materials, 2021, 522:167544.
    [77] ZHAO B X, YAO K, WU L B, et al. Theoretical and experimental study on the effect of stress corrosion on magnetic flux leakage signals[J]. Construction and Building Materials, 2023, 399:132461.
    [78] KRAUSE H J, WOLF W, GLAAS W, et al. SQUID array for magnetic inspection of prestressed concrete bridges[J]. Physica C:Superconductivity, 2002, 368(1):91-95.
    [79] 田静. 基于爬索机器人的缆索内部缺陷检测研究[D]. 哈尔滨:哈尔滨理工大学, 2022.TIAN Jing. Research of the cable internal defect detection based on cable climbing robot [D]. Harbin:Harbin University of Science and Technology, 2022. (in Chinese)
    [80] JILES D C, ATHERTON D L. Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect[J]. Journal of Physics D:Applied Physics, 1984, 17(6):1265-1281.
    [81] JILES D C. Theory of the magnetomechanical effect[J]. Journal of Physics D:Applied Physics. 1998, 28(8):1537-1546.
    [82] SHI P P, JIN K, ZHENG X J. A magnetomechanical model for the magnetic memory method[J]. International Journal of Mechanical Sciences, 2017, 124:229-241.
    [83] 韦璐茜, 苏三庆, 王威, 等. 钢箱梁受弯屈曲的磁记忆参数表征[J]. 振动与冲击, 2022, 41(16):142-148.WEI Luqian, SU Sanqing, WANG Wei, et al. Characterization of buckling of a steel box girder under bending using parameter of magnetic memory [J]. Journal of Vibration and Shock, 2022, 41(16):142-148. (in Chinese)
    [84] GONG Y, ZHOU J T, ZHAO R Q, et al. Study on stress measurement for steel bars inside RC beams based on self-magnetic flux leakage effect[J]. Journal of Magnetism and Magnetic Materials, 2022, 562:169784.
    [85] QIU G T, CAI Y Q, LI Z J. Multiscale investigation of magnetic field distortion on surface of ferromagnetic materials caused by stress concentration for metal magnetic memory method[J]. Computational Materials Science, 2022, 209:111353.
    [86] BAO S, LOU H J, ZHAO Z Y. Evaluation of stress concentration degree of ferromagnetic steels based on residual magnetic field measurements[J]. Journal of Civil Structural Health Monitoring, 2020, 10:109-117.
    [87] 童凯, 周建庭, 赵瑞强, 等. 反复拉伸加载下钢筋力磁耦合效应[J]. 建筑材料学报, 2023, 26(7):771-782.TONG Kai, ZHOU Jianting, ZHAO Ruiqiang, et al. Force-magnetic coupling effect of steel bars under repeated tensile loading[J]. Journal of Building Materials, 2023, 26(7):771-782. (in Chinese)
    [88] TONG K, ZHANG H, ZHAO R Q, et al. Investigation of SMFL monitoring technique for evaluating the load-bearing capacity of RC bridges[J]. Engineering Structures, 2023, 293:116667.
    [89] TONG K, ZHOU J T, ZHAO R Q, et al. Quantitative measurement of stress in steel bars under repetitive tensile load based on force-magnetic coupling effect[J]. Measurement, 2022, 202:111820.
    [90] ZHANG K, ZHANG J, JIN W, et al. Characterization of fatigue crack propagation of pitting-corroded rebars using weak magnetic signals[J]. Engineering Fracture Mechanics, 2021, 257:108033.
    [91] 黄爽, 张军, 金伟良, 等. 基于压磁效应的锈胀开裂混凝土梁疲劳性能试验研究[J]. 海洋工程, 2022, 40(6):105-113.HUANG Shuang, ZHANG Jun, JIN Weiliang, et al. Experimental study on fatigue performance of corroded and cracked concrete beams based on piezomagnetic effect [J]. The Ocean Engineering, 2022, 40(6):105-113. (in Chinese)
    [92] 张军, 张凯, 金伟良, 等. 混凝土梁内坑蚀钢筋的疲劳断裂特性及其压磁表征研究[J]. 土木工程学报, 2023, 56(2):34-45.ZHANG Jun, ZHANG Kai, JIN Weiliang, et al. Research on fatigue fracture characteristics of pitting-corroded reinforcement in concrete beam and its piezomagnetic characterization [J]. China Civil Engineering Journal, 2023, 56(2):34-45. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张伟平,邱俊澧,姜超.钢筋混凝土结构锈蚀特征的漏磁探测研究进展[J].建筑材料学报,2024,27(11):1022-1032

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-10
  • 最后修改日期:2024-03-11
  • 在线发布日期: 2024-12-10
文章二维码