减缩剂对碱激发矿渣-铜渣砂浆的影响及作用机理
作者:
作者单位:

1.安徽建筑大学 建筑结构与地下工程安徽省重点实验室, 安徽 合肥 230601;2.安徽建筑大学 土木工程学院, 安徽 合肥 230601;3.北京建筑材料科学研究总院有限公司, 北京 100041

作者简介:

许荣盛(1988—),男,安徽桐城人,安徽建筑大学讲师,硕士生导师.博士.E-mail:rongshengxu@ahjzu.edu.cn

通讯作者:

许荣盛(1988—),男,安徽桐城人,安徽建筑大学讲师,硕士生导师.博士.E-mail:rongshengxu@ahjzu.edu.cn

中图分类号:

TQ172

基金项目:

国家自然科学基金资助项目(52308227)


Effect and Mechanism of Shrinkage Reducing Admixture on Alkali-Activated Slag-Copper Slag Mortar
Author:
Affiliation:

1.Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China;2.College of Civil Engineering, Anhui Jianzhu University, Hefei, 230601, China;3.Beijing Building Materials Academy of Sciences Research Co., Ltd., Beijing 100041, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过掺入聚醚型减缩剂(PSRA)改善碱激发矿渣-铜渣砂浆(CSM)的体积稳定性,研究了PSRA掺量对CSM凝结时间、抗压强度和干燥收缩率的影响,并采用等温量热仪、X射线衍射仪、扫描电镜-能谱仪、核磁共振和热重-差示量热分析仪等分析了PSRA对CSM水化进程和微观结构影响,探讨了PSRA的减缩机理.结果表明:PSRA的掺入延长了CSM净浆的凝结时间,延缓了体系的水化进程,且延缓作用随着PSRA掺量的增大而增强;PSRA掺量为0%~2.0%时,CSM的干燥收缩率和抗压强度均随着PSRA掺量的增大而逐渐减小;PSRA降低了孔溶液的表面张力,改变了孔结构,使得毛细管压力下降,进而起到减小CSM干燥收缩的效果.

    Abstract:

    The volume stability of alkali-activated slag-copper slag mortar(CSM) was improved by incorporating polyether-type shrinkage reducing admixture(PSRA). The effects of PSRA content on the setting time, compressive strength and drying shrinkage of CSM were investigated. The hydration process and microstructure of CSM were studied by isothermal calorimetry, X-ray diffractometer, scanning electron microscopy-energy dispersive spectrometer, nuclear magnetic resonance and thermogravimetric-differential scanning calorimetry. The shrinkage reduction mechanism of SRA was explored. The results show that the incorporation of PSRA extends the setting time of CSM slurry, and delays the hydration process of the system, with the delaying effect increasing as the PSRA content increases. When the PSRA content ranges from 0% to 2.0%, both the drying shrinkage and compressive strength of CSM gradually decrease with the increase of PSRA content. PSRA reduces the surface tension of the pore solution and changes the pore structure, resulting in a decrease in capillary pressure and thus reducing drying shrinkage of CSM.

    表 1 铜渣和高炉矿渣的化学组成Table 1 Chemical compositions(by mass) of CS and GGBS
    表 2 PSRA对孔溶液表面张力的影响Table 2 Effect of PSRA on surface tension of pore solutions
    图1 铜渣和矿渣的粒度分布Fig.1 Particle size distribution of CS and GGBS
    图2 铜渣和矿渣的XRD图谱Fig.2 XRD patterns of CS and GGBS
    图3 PSRA对净浆凝结时间和水化热的影响Fig.3 Effect of PSRA on setting time and hydration heat of pastes
    图4 PSRA对CSM抗压强度的影响Fig.4 Effect of PSRA on compressive strength of CSM
    图5 PSRA对CSM干燥收缩率的影响Fig.5 Effect of PSRA on drying shrinkage rate of CSM
    图6 孔溶液的离子浓度Fig.6 Ion concentrations of pore solution
    图7 PSRA对CSM孔径分布的影响Fig.7 Effect of PSRA on pore size distribution of CSM
    图8 CSM的XRD图谱Fig.8 XRD patterns of CSM
    图9 CSM的SEM照片和EDS能谱Fig.9 SEM images and EDS spectrum of CSM
    图10 试件R0和S4的TG-DSC曲线Fig.10 TG-DSC curves of specimen R0 and S4
    参考文献
    [1] 朱街禄, 宋军伟, 王露, 等. 铜渣粉-水泥复合胶凝体系的水化热及动力学研究[J]. 建筑材料学报, 2020, 23(6):1282-1288.ZHU Jielu, SONG Junwei, WANG Lu, et al. Hydration heat and kinetics of copper slag powder-cement composite cementitious system[J]. Journal of Building Materials, 2020, 23(6):1282-1288.(in Chinese)
    [2] 蒋周, 李鹏, 闫炳基, 等. 基于铜渣制备γ-Fe2O3及其光催化-降解性能研究[J]. 中国有色冶金, 2023, 52(4):88-96.JIANG Zhou, LI Peng, YAN Bingji, et al. Preparation and photocatalytic-degradation property of γ-Fe2O3 based on copper slag[J]. China Nonferrous Metallurgy, 2023, 52(4):88-96. (in Chinese)
    [3] 高术杰, 倪文, 李克庆, 等. 用水淬二次镍渣制备矿山充填材料及其水化机理[J]. 硅酸盐学报, 2013, 41(5):612-619.GAO Shujie, NI Wen, LI Keqing, et al. Preparation and hydrated mechanism of mine filling material of water-granulated secondary nickel slag[J]. Journal of the Chinese Ceramic Society, 2013, 41(5):612-619. (in Chinese)
    [4] 南雪丽, 杨旭, 张宇, 等. 钢渣-矿渣基胶凝材料协同水化机理研究[J]. 建筑材料学报, 2024, 27(4):366-374.Xueli NAN, YANG Xu, ZHANG Yu, et al. Synergistic hydration mechanism of steel slag-slag based cementitious material[J]. Journal of Building Materials, 2024, 27(4):366-374. (in Chinese)
    [5] 王林松, 高志勇, 杨越, 等. 铜渣综合回收利用研究进展[J]. 化工进展, 2021, 40(10):5237-5250.WANG Linsong, GAO Zhiyong, YANG Yue, et al. Research progress on comprehensive recovery and utilization of copper slag[J].Chemical Industry and Engineering Progress, 2021, 40(10):5237-5250. (in Chinese)
    [6] SINGH J, SINGH S P. Synthesis of alkali-activated binder at ambient temperature using copper slag as precursor[J]. Materials Letters, 2020, 262:127169.
    [7] SINGH J, SINGH S P. Development of alkali-activated cementitious material using copper slag[J]. Construction and Building Materials, 2019, 211:73-79.
    [8] XU R S, WANG H R, YANG R H, et al. The potential of copper slag as a precursor for partially substituting blast furnace slag to prepare alkali-activated materials[J]. Journal of Cleaner Production, 2024, 434:140283.
    [9] 彭晖, 李一聪, 罗冬, 等. 碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J]. 建筑材料学报, 2020, 23(6):1390-1397.PENG Hui, LI Yicong, LUO Dong, et al. Analysis of reaction level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials, 2020, 23(6):1390-1397. (in Chinese)
    [10] 林学智, 赖俊英, 周益帆, 等. 聚醚型两亲分子对水泥净浆收缩的影响及机理[J]. 建筑材料学报, 2024, 27(1):1-8, 29.LIN Xuezhi, LAI Junying, ZHOU Yifan, et al. Effects and mechanism of amphiphilic polyether on shrinkage of cement paste[J]. Journal of Building Materials, 2024, 27(1):1-8, 29. (in Chinese)
    [11] 杨进, 王发洲, 黄劲, 等. 不同类型减缩剂减缩效果比较分析[J]. 建筑材料学报, 2016, 19(1):53-58.YANG Jin, WANG Fazhou, HUANG Jin, et al. Comparative analysis of reduction effects of different shrinkage reducing agents in concrete[J]. Journal of Building Materials, 2016, 19(1):53-58. (in Chinese)
    [12] ZUO W Q, FENG P, ZHONG P H, et al. Effects of novel polymer-type shrinkage-reducing admixture on early age autogenous deformation of cement pastes[J]. Cement and Concrete Research, 2017, 100:413-422.
    [13] PALACIOS M, PUERTAS F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement and Concrete Research, 2007, 37(5):691-702.
    [14] HU X, SHI C J, ZHANG Z H, et al. Autogenous and drying shrinkage of alkali-activated slag mortars[J]. Journal of the American Ceramic Society, 2019, 102(8):4963-4975.
    [15] 张文艳, 林华夏, 王帅, 等. 减缩剂对碱激发煤矸石-矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(2):526-535.ZHANG Wenyan, LIN Huaxia, WANG Shuai, et al. Effect of shrinkage reducing agent on properties of alkali-activated coal gangue-slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):526-535. (in Chinese)
    [16] 王俊颜, 庄云芳, 刘菲凡, 等. 减缩剂和PVA纤维对超轻水泥复合材料收缩开裂行为的影响[J]. 建筑材料学报, 2022, 25(7):744-750.WANG Junyan, ZHONG Yunfang, LIU Feifan, et al. Effect of shrinkage reduce admixture and pva fiber on shrinkage cracking behaviors of ultra lightweight cement composite[J]. Journal of Building Materials, 2022, 25(7):744-750. (in Chinese)
    [17] MAKHADMEH W AL, SOLIMAN A. On the mechanisms of shrinkage reducing admixture in alkali activated slag binders[J]. Journal of Building Engineering, 2022, 56:104812.
    [18] SOLIMAN A, NEHDI M. Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete [J]. Cement and Concrete Composites, 2014, 46:81-89.
    [19] MA H Q, ZHU H G, WU C, et al. Effect of shrinkage reducing admixture on drying shrinkage and durability of alkali-activated coal gangue-slag material[J]. Construction and Building Materials, 2021, 270:121372.
    [20] 龚建清, 罗鸿魁, 张阳, 等. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8):8042-8048, 8063.GONG Jianqing, LUO Hongkui, ZHANG Yang, et al. Effect of shrinkage reducing agent and HCSA expansion agent on mechanical properties and shrinkage properties of UHPC[J]. Materials Reports, 2021, 35(8):8042-8048, 8063. (in Chinese)
    [21] LIU J H, SHI C J, FARZADNIA N, et al. Effects of pretreated fine lightweight aggregate on shrinkage and pore structure of ultra-high strength concrete[J]. Construction and Building Materials, 2019, 204:276-287.
    [22] ZHANG T T, JIN H L, GUO L J, et al. Mechanism of alkali-activated copper-nickel slag material[J]. Advances in Civil Engineering, 2020, 2020:7615848.
    [23] QU Z Y, YU Q L, JI Y D, et al. Mitigating shrinkage of alkali activated slag with biofilm[J]. Cement and Concrete Research, 2020, 138:106234.
    [24] LOPEZ T, BOSCH P, ASOMOZA M, et al. DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites:Aluminum source effect on physicochemical properties[J]. Materials Letters, 1997, 31(3-6):311-316.
    [25] LUO S Q, ZHAO M H, JIANG Z Z, et al. Microwave preparation and carbonation properties of low-carbon cement[J]. Construction and Building Materials, 2022, 320:126239.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许荣盛,汪浩然,杨仁和,孔凡辉,洪通.减缩剂对碱激发矿渣-铜渣砂浆的影响及作用机理[J].建筑材料学报,2024,27(11):1047-1053

复制
分享
文章指标
  • 点击次数:77
  • 下载次数: 48
  • HTML阅读次数: 6
  • 引用次数: 0
历史
  • 收稿日期:2023-12-28
  • 最后修改日期:2024-05-22
  • 在线发布日期: 2024-12-10
文章二维码