基于性能需求的机制骨料混凝土配合比设计
作者:
作者单位:

1.贵州桥梁建设集团有限责任公司,贵州 贵阳 550001;2.同济大学 先进土木工程材料教育部重点实验室,上海 201804;3.同济大学 材料科学与工程学院,上海 201804

作者简介:

吴朝明(1980 —),男,贵州印江人,贵州桥梁建设集团有限责任公司高级工程师,学士. E-mail: 10482756@qq.com

通讯作者:

任 强(1991 —),男,江苏徐州人,同济大学特聘研究员,博士生导师,博士. E-mail: renqiang@tongji.edu.cn

中图分类号:

TU525

基金项目:

贵州省交通运输厅科技项目(2022-122-024);宁波市重大科技攻关暨揭榜挂帅项目(2022Z030)


Mix Design of Manufactured Aggregate Concrete According to Performance Requirements
Author:
Affiliation:

1.Guizhou Bridge Construction Group Co., Ltd., Guiyang 550001, China;2.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China;3.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于Dinger-Funk级配理论提出了机制骨料级配设计方法,通过修正Bolomey公式明确了适用于机制骨料混凝土的强度-水胶比关系;通过引入裹浆厚度概念建立了骨料与浆体之间的体积关系,并将机制砂中的石粉视作浆体组成,建立了机制骨料混凝土的配合比设计方法并进行了验证.结果表明:混凝土的工作性可以通过裹浆厚度来加以调控;混凝土的抗压强度和氯离子扩散系数与裹浆厚度无明显相关性,可以通过水胶比来加以调控;本文提出的配合比设计方法可以定量设计满足不同性能需求的机制骨料混凝土.

    Abstract:

    The mix design of manufactured aggregate was proposed based on the Dinger-Funk grading model. The mass relationship between binder and water for concrete with manufactured aggregate was determined by modifying the Bolomey’s formula. The paste thickness was introduced to establish the volume relationship between aggregate and paste. In addition, the stone powder in manufactured sand was considered as a component of the paste. Finally, the mix design method of concrete with manufactured sand was proposed and verified with concrete of different strength grades. The results show that the workability of concrete can be regulated by the paste thickness. The compressive strength of concrete and the diffusion coefficient of chloride have no obvious correlation with the paste thickness, with the water to binder ratio being the main factor regulating the hardened performance of concrete. The proposed mix design method can be used to quantitatively design concrete with manufactured aggregate for various performance requirements.

    表 4 不同粒径骨料在机制骨料体系中的体积分数Table 4 Volume fractions of aggregates with different particle sizes in manufactured aggregate system
    表 3 骨料级配的优化结果Table 3 Optimization results of aggregate gradation
    表 1 胶凝材料的化学组成Table 1 Chemical compositions(by mass) of cementitious materials
    图1 胶凝材料的粒径分布Fig.1 Particle size distributions of cementitious materials
    图2 机制砂的粒径分布Fig.2 Particle size distribution of manufactured sand
    图3 混凝土的构成组分示意图Fig.3 Schematic diagram of concrete components
    图4 机制骨料堆积空隙率在不同q值下的变化情况Fig.4 Packing void fractions of aggregate with various q values
    图5 修正Bolomey公式的拟合结果Fig.5 Fitting results of modified Bolomey formula
    图6 裹浆厚度对混凝土工作性的影响Fig.6 Influence of paste thickness on workability of concrete
    图7 裹浆厚度对混凝土抗压强度的影响Fig.7 Influence of paste thickness on compressive strength of concrete
    图8 裹浆厚度对C60混凝土抗氯离子渗透性能的影响Fig.8 Influence of paste thickness on chloride ion permeability resistance of C60 concrete
    表 2 骨料的性能Table 2 Properties of aggregates
    参考文献
    [1] 蒋正武, 高文斌, 杨巧, 等. 低碳混凝土技术理念与途径思考[J]. 建筑材料学报, 2023, 26(11):1143-1150.JIANG Zhengwu, GAO Wenbin, YANG Qiao, et al. Technical principles and approaches of low-carbon concrete[J]. Journal of Building Materials, 2023, 26(11):1143-1150. (in Chinese)
    [2] 汪保印, 张洁, 熊金伟, 等. 废弃石粉对混凝土的性能影响及碳排放分析[J]. 建筑材料学报, 2023, 26(11):1151-1157, 1206.WANG Baoyin, ZHANG Jie, XIONG Jinwei, et al. Influence of waste stone powder on the properties and carbon emissions of concrete[J]. Journal of Building Materials, 2023, 26(11):1151-1157, 1206. (in Chinese)
    [3] PENG Y Z, LI X, LIU Y J, et al. Optimization for mix proportion of reactive powder concrete containing phosphorous slag by using packing model[J]. Journal of Advanced Concrete Technology, 2020,18(9):481-492.
    [4] 崔巩, 刘建忠, 姚婷, 等. 基于Dinger-Funk方程的活性粉末混凝土配合比设计[J]. 东南大学学报(自然科学版), 2010,40(增刊Ⅱ):15-19.CUI Gong, LIU Jianzhong, YAO Ting, et al. Design of reactive powder concrete mix ratio based on Dinger-Funk equation[J]. Journal of Southeast University (Natural Science), 2010, 40(Suppl Ⅱ):15-19. (in Chinese)
    [5] 万纯斌, 唐凯, 李北星, 等. 基于致密配合比法的索塔清水混凝土配合比设计及性能研究[J]. 混凝土, 2012(10):100-102.WAN Chunbin, TANG Kai, LI Beixing, et al. Mixture proportion and properties of fair-faced concrete for cable support tower using a densified mixture design algorithm[J]. Concrete, 2012(10):100-102. (in Chinese)
    [6] HÜSKEN G, BROUWERS H J H. A new mix design concept for earth-moist concrete:A theoretical and experimental study.[Erratum to document cited in CA149:562104][J]. Cement and Concrete Research, 2009, 39(9):832.
    [7] BABU K G, NAGESWARA RAO G S. Efficiency of fly ash in concrete[J]. Cement and Concrete Composites, 1993,15(4):223-229.
    [8] HANSEN T C, HEDEGAARD S E. Modified rule of constant water-content for constant consistency of fresh fly-ash concrete mixes[J]. Materials and Structures, 1992, 25(6):347-354.
    [9] 孟令凯. 基于浆体体积富余系数的混凝土配合比设计[D]. 烟台:烟台大学, 2018.MENG Lingkai. Concrete mix design based on surplus coefficient of slurry volume[D]. Yantai :Yantai University, 2018. (in Chinese)
    [10] BROUWERS H J. Particle-size distribution and packing fraction of geometric random packings[J]. Physical Review E, 2006, 74(3):031309.
    [11] 史才军, 王德辉, 安晓鹏, 等. 基于多种性能要求的混凝土组成设计方法[J]. 硅酸盐学报, 2018, 46(2):230-238.SHI Caijun, WANG Dehui, AN Xiaopeng, et al. Design method of concrete composition based on various performance requirements [J]. Journal of the Chinese Ceramic Society, 2018, 46(2):230-238. (in Chinese)
    [12] CEPURITIS R, GARBOCZI E J, FERRARIS C F, et al. Measurement of particle size distribution and specific surface area for crushed concrete aggregate fines[J]. Advanced Powder Technology, 2017, 28(3):706-720.
    [13] 焦登武, 安晓鹏, 史才军, 等. 骨料裹浆厚度对混凝土流变性能的影响[J]. 硅酸盐学报, 2017, 45(9):1360-1366.JIAO Dengwu, AN Xiaopeng, SHI Caijun, et al. Effect of aggregate paste thickness on rheological properties of concrete[J]. Journal of the Chinese Ceramic Society, 2017, 45(9):1360-1366. (in Chinese)
    [14] 卢喆, 冯振刚, 姚冬冬, 等. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1):203-208.LU Zhe, FENG Zhengang, YAO Dongdong, et al. Analysis of influencing factors on workability and strength of ultra-high performance concrete [J]. Materials Reports, 2020, 34(Z1):203-208. (in Chinese)
    [15] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3):1-24.CHEN Baochun, JI Tao, HUANG Qingwei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3):1-24. (in Chinese)
    [16] 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1):141-149.WANG Dehui, SHI Caijun, WU Linmei. Research and application of ultra-high performance concrete in China[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1):141-149. (in Chinese)
    [17] SHI C J, WU Z M, XIAO J F, et al. A review on ultra high performance concrete:Part I. Raw materials and mixture design[J]. Construction and Building Materials, 2015,101:741-751.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴朝明,李春锦,胡堃,吴程航,任强.基于性能需求的机制骨料混凝土配合比设计[J].建筑材料学报,2024,27(8):667-674

复制
分享
文章指标
  • 点击次数:299
  • 下载次数: 5328
  • HTML阅读次数: 58
  • 引用次数: 0
历史
  • 收稿日期:2023-10-30
  • 最后修改日期:2023-12-05
  • 在线发布日期: 2024-09-03
文章二维码