海洋环境下高强钢及焊缝连接粗糙度参数分析
作者:
作者单位:

1.东南大学 混凝土及预应力混凝土结构教育部重点实验室,江苏 南京 211189;2.东南大学 江苏省工程力学分析重点实验室,江苏 南京 211189;3.西安理工大学 西北旱区生态水利工程国家重点实验室,陕西 西安 710048;4.西安建筑科技大学 土木工程学院,陕西 西安 710054

作者简介:

魏欢欢(1996—),男,陕西宝鸡人,东南大学博士生.E-mail:wh0402@seu.edu.cn

通讯作者:

汤轶群(1985—),男,江苏连云港人,东南大学副教授,博士生导师,博士.E-mail:yi-qun.tang@seu.edu.cn

中图分类号:

TU511.3

基金项目:

国家自然科学基金资助项目(52008094);江苏省自然科学基金资助项目(SBK2020040);江苏省研究生科研与实践创新计划项目(KYCX23_0273,KYCX24_0367);中央高校基本科研业务费专项资金资助项目(2242024k30065)


Research on Roughness Parameters of High Strength Steel and Weld Joint in Marine Environment
Author:
Affiliation:

1.Key Laboratory of Concrete & Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China;2.Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 211189, China;3.State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China;4.School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710054, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究海洋浪溅区环境下高强钢及焊缝连接的腐蚀形貌特征和时变效应,通过微观扫描测试Q690高强钢及焊缝连接表面粗糙度参数,得到表面峰最大高度(Sp)、表面谷最大深度(Sv)、表面轮廓偏斜度(Ssk)及表面轮廓峭度(Sku)随腐蚀时间的演化规律,并进行回归分析与对比.结果表明:通过分析粗糙度参数随腐蚀时间的变化过程,以及对比Q690高强钢母材与焊缝连接扫描区域的差异性,能准确地判断其腐蚀程度及特征,从而为海洋环境下国产高强钢损伤评估提供新的途径.

    Abstract:

    The surface roughness parameters of Q690 high strength steel and weld joint specimens were assessed through microscopic scanning tests to investigate the dynamic changes in corrosion morphology characteristics of high strength steel(HSS) within the ocean splash zone corrosive environment. These investigations encompassed the analysis of parameters such as the maximum height of surface peaks Sp, the maximum depth of surface valleys Sv, the skewness of surface profiles Ssk, and the kurtosis of surface profiles Sku over varying periods of corrosion. Power function regression analyses and comparative assessments were conducted for each of these parameters. The results indicate that considering the differences in the scanning area of base material and weld joint of Q690 high strength steel, the corrosion degrees and characteristics can be accurately determined by analyzing the variation process of roughness parameters with corrosion time, so as to provide a new approach for damage assessment of domestically produced high strength steel in marine environments.

    表 2 焊接工艺参数Table 2 Welding process parameters
    表 3 焊条熔敷金属的力学性能Table 3 Mechanical properties of deposited metal
    图1 腐蚀形貌示意图Fig.1 Schematic diagram of corrosion morphology
    图2 腐蚀60 d试件的三维形貌图Fig.2 3D morphology of the corroded specimen after 60 d
    图3 Q690高强钢母材的粗糙度参数Fig.3 Roughness parameters of Q690 high strength steel
    图4 Q690高强钢焊缝连接区的粗糙度参数Fig.4 Roughness parameters of weld joint of Q690 high strength steel
    表 1 Q690钢材与焊条的化学组成Table 1 Chemical compositions(by mass) of Q690 steel and electrode
    参考文献
    [1] 喻宣瑞, 姚国文, 钟浩, 等. 交变荷载和氯盐环境耦合作用下钢绞线的腐蚀特征及力学性能[J]. 建筑材料学报, 2021, 24(6):1315-1321.YU Xuanrui, YAO Guowen, ZHONG Hao, et al. Corrosion characteristics and mechanical properties of steel strands under coupling effect of alternating load and chloride salt environment[J]. Journal of Building Materials, 2021, 24(6):1315-1321. (in Chinese)
    [2] 魏欢欢, 贾鹏孝, 郑东东, 等. 腐蚀环境中高强钢力学性能的研究进展[J]. 腐蚀与防护, 2023, 44(5):51-56.WEI Huanhuan, JIA Pengxiao, ZHENG Dongdong, et al. Research progress on mechanical properties of high strength steel in corrosive environment[J]. Corrosion & Protection, 2023, 44(5):51-56. (in Chinese)
    [3] 魏欢欢, 陈晨, 郑东东, 等. 海洋腐蚀环境下高强度钢材研究现状及发展趋势[J]. 人民珠江, 2023, 44(8):82-92.WEI Huanhuan, CHEN Chen, ZHENG Dongdong, et al. Research status and development trend of high strength steel in marine corrosive environment[J]. Pearl River, 2023, 44(8):82-92. (in Chinese)
    [4] PASTORCIC D, VUKELIC G, IVOSEVIC S. Welded steel in marine environment—Experimental and numerical study of mechanical properties degradation[J]. Materials Today Communication, 2023, 34:105280.
    [5] BHANDARI J, KHAN F, ABBASSI R, et al. Modelling of pitting corrosion in marine and offshore steel structures—A technical review[J]. Journal of Loss Prevention in the Process Industries, 2015, 37:39-62.
    [6] 常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32(3):247-250.CHANG Anle, SONG Shizhe. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone[J]. Journal of Chinese Society for Corrosion and Protection, 2012, 32(3):247-250. (in Chinese)
    [7] 郭宏超, 魏欢欢, 杨迪雄, 等. 海洋腐蚀环境下Q690高强钢材疲劳性能试验研究[J]. 土木工程学报, 2021, 54(5):36-45.GUO Hongchao, WEI Huanhuan, YANG Dixiong, et al. Experimental research on fatigue performance of Q690 high strength steel in marine corrosive environment[J]. China Civil Engineering Journal, 2021, 54(5):36-45. (in Chinese)
    [8] 舒赣平, 陈尧, 卢瑞华, 等. 模拟海洋与工业大气环境下结构钢腐蚀行为[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(4):475-481,490.SHU Ganping, CHEN Rao, LU Ruihua, et al. Corrosion behavior of structural steel in simulated marine and industrial atmosphere environment[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(4):475-481,490. (in Chinese)
    [9] 徐善华, 何羽玲, 秦广冲, 等. 钢材锈蚀率与表面三维粗糙度参数的关系[J]. 材料科学与工程学报, 2016, 34(2):292-295.XU Shanhua, HE Yuling, QIN Guangchong, et al. Relationship between steel corrosion ratio and 3D surface roughness parameters[J]. Journal of Materials Science and Engineering, 2016, 34(2):292-295. (in Chinese)
    [10] WAN S P, ZHOU H J, LI L X, et al. Degradation of artificially corroded galvanized high-strength steel wires:Corrosion morphology and mechanical behavior[J]. Construction and Building Materials, 2022, 346:128387.
    [11] QIN H, TANG Y C, LIANG P. Effect of heat input on microstructure and corrosion behavior of high strength low alloy steel welds[J]. International Journal of Electrochemical Science, 2021, 16:210449.
    [12] REN S B, KONG C, GU Y, et al. Measurement pitting morphology characteristic of corroded steel surface and fractal reconstruction model[J]. Measurement, 2022, 190:110678.
    [13] KINGKAM W, ZHAO C Z, LI H, et al. Hot deformation and corrosion resistance of high-strength low-alloy steel[J]. Acta Metallurgica Sinica(English Letters), 2019, 32(4):495-505.
    [14] 贾晨, 邵永松, 郭兰慧, 等. 建筑结构用钢的大气腐蚀模型研究综述[J]. 哈尔滨工业大学学报, 2020, 52(8):1-9.JIA Chen, SHAO Yongsong, GUO Lanhui, et al. A review of atmospheric corrosion models of building structural steel[J]. Journal of Harbin Institute of Technology, 2020, 52(8):1-9. (in Chinese)
    [15] SANTA-CRUZ L A, MACHADO G, VICENTE A A, et al. Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(6):710-721.
    [16] 魏欢欢, 雷天奇, 郑东东, 等. Q690高强钢对接焊缝加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2022, 42(4):675-680.WEI Huanhuan, LEI Tianqi, ZHENG Dongdong, et al. Corrosion characteristics of butt welds of Q690 high strength steel in laboratory test as an environmental simulation of ocean splash zone[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4):675-680. (in Chinese)
    [17] 魏欢欢, 郑东东, 陈晨, 等. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(1):186-190.WEI Huanhuan, ZHENG Dongdong, CHEN Chen, et al. Corrosion resistance of Q690 high strength steel in simulated corrosive environment of ocean splash zone[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(1):186-190. (in Chinese)
    [18] 刘洪涛, 靳晶, 曹守范, 等. 干摩擦磨损过程中表面粗糙度的定量描述[J]. 材料研究学报, 2011, 25(5):483-488.LIU Hongtao, JIN Jing, CAO Shoufan, et al. The quantitative analysis of surface roughness in the dry friction[J]. Chinese Journal of Materials Research, 2011, 25(5):483-488. (in Chinese)
    [19] 郭宏超, 李彤宇, 王德法, 等. 海洋环境下锈蚀高强度钢材滞回性能[J]. 建筑材料学报, 2021, 24(4):781-787.GUO Hongchao, LI Tongyu, WANG Defa, et al. Hysteretic properties of corroded high strength steel in marine environment[J]. Journal of Building Materials, 2021, 24(4):781-787. (in Chinese)
    [20] 喻宣瑞, 姚国文, 蒋一星, 等. 基于三维Copula函数的蚀坑预测模型[J]. 建筑材料学报, 2021, 24(5):1082-1088.YU Xuanrui, YAO Guowen, JIANG Yixing, et al. Pit prediction model based on three-dimensional copula function[J]. Journal of Building Materials, 2021, 24(5):1082-1088. (in Chinese)
    [21] GATHIMBA N, KITANE Y, YOSHIDA T, et al. Surface roughness characteristics of corroded steel pipe piles exposed to marine environment[J]. Construction and Building Materials, 2019, 203:267-281.
    [22] 侯保荣. 我的海洋浪花飞溅区腐蚀情缘[J]. 海洋科学, 2020, 44(7):179-193.HOU Baorong. My passion for the corrosion protection of ocean splash zone[J]. Marine Sciences, 2020, 44(7):179-193. (in Chinese)
    [23] WANG Y D, ZHOU X D, WANG H, et al. Stochastic constitutive model of structural steel based on random field of corrosion depth[J]. Case Studies in Construction Materials, 2022, 16:e00972.
    [24] TIAN H Y, CUI Z Y, MA H, et al. Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments:Effect of the marine zones[J]. Corrosion Science, 2022, 206:110490.
    相似文献
    引证文献
引用本文

魏欢欢,汤轶群,张广才,陈晨.海洋环境下高强钢及焊缝连接粗糙度参数分析[J].建筑材料学报,2024,27(8):727-732

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-08
  • 最后修改日期:2023-12-14
  • 在线发布日期: 2024-09-03
文章二维码