高聚物-纤维复合改良砂土的强度特性与变形机理
作者:
作者单位:

河海大学 地球科学与工程学院,江苏 南京 211100

作者简介:

黄庭伟(2001—),男,湖南邵阳人,河海大学硕士生.E-mail: huangtw728@163.com

通讯作者:

刘 瑾(1983—),女,福建漳州人,河海大学教授,博士生导师,博士.E-mail: jinliu920@163.com

中图分类号:

TU411

基金项目:

国家自然科学基金资助项目(42307189)


Strength Characteristics and Deformation Mechanism of Modified Sand by Using Polymers and Fibers
Author:
Affiliation:

School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为改善砂土的不良工程特性并可用于河道岸坡、地基与道路加固,本文提出了一种使用高聚物和纤维复合改良砂土的方法.通过无侧限抗压强度试验和数值模拟,分析了改良砂土的强度特性及变形破坏模式.结果表明:复合使用高聚物和纤维能够有效提高砂土的抗压强度,且改良砂土的抗压强度随着高聚物和纤维掺量的增加而提高;改良砂土的最大抗压强度为414.53 kPa,纤维和高娶物最佳建议掺量分别为0.6%和4.0%;纤维加入后,在砂土中形成了力链网络,因此增加了应力传递的路径,有效地延缓了砂土内部微裂纹的发育;高聚物加入后,形成的膜状物与纤维交织在一起,形成一种新的网状结构,这显著提升了砂土的抗变形能力.

    Abstract:

    To improve the unfavorable engineering performance of sand and make it applicable for riverbank slopes, foundation, and road reinforcement, a method for modifying sand using polymers and fibers is proposed. Through unconfined compressive strength tests and numerical simulations, the strength characteristics and deformation failure modes of the modified sand are analyzed. The results indicate that the combined use of polymers and fibers can effectively enhance the compressive strength of sand, and the compressive strength of the modified sand increases with the dosage of polymers and fibers. The maximum compressive strength of the modified sand is 414.53 kPa, with the optimal recommended dosages of fibers and polymers being 0.6% and 4.0%, respectively. The addition of fibers forms a force chain network in the sand, thereby increasing the stress transmission paths and effectively delaying the development of micro-cracks within the sand. The incorporation of polymers creates a membranous substance that intertwines with the fibers, forming a new network structure, which significantly improves the deformation resistance of the sand.

    表 1 高分子聚合物的基本物理参数Table 1 Basic physical parameters of superpolymer
    表 3 模型初始参数Table 3 Initial parameters of the model
    图1 改性材料Fig.1 Modified material
    图2 接触布置和数值模型Fig.2 Contact placement and numerical model(size: mm)
    图3 不同高聚物纤维掺量下改良砂土的应力-应变曲线Fig.3 Stress-strain curves of improved sand with different fiber dosage
    图4 高聚物和纤维掺量对改良砂土抗压强度的影响Fig.4 Influence of superpolymer and fiber dosage on compressive strength of modified sand
    图5 高掺量纤维与高聚物下改良砂土试样的局部示意图Fig.5 Local diagram of samples with high dosage of fibers and superpolymer
    图6 数值试验模型验证Fig.6 Verification of the numerical simalation test
    图7 不同纤维含量试样的力链分布Fig.7 Force chain distribution of samples with different fiber dosages
    图8 不同纤维掺量下试样的接触力链参数变化Fig.8 Change of contact force chain parameters of samples with different fiber dosages
    图9 不同纤维掺量下砂土试样破坏模式Fig.9 Failure modes of sand samples with the different dosage
    图10 不同纤维掺量的试样微裂纹热力分布Fig.10 Thermal distribution of microcracks in samples with different fiber dosage
    图11 不同纤维掺量下试样微裂纹数量与发育过程Fig.11 Number and development process of microcracks in samples with different fiber dosage
    图12 高聚物-纤维复合改良砂土的改良机理Fig.12 Improvement mechanism of sand modified composilely by fiber and polymer
    图13 高聚物-纤维复合改良砂土的破坏过程Fig.13 Failure process of sand improved compositely by polymer and fiber
    表 2 聚丙烯纤维的物理参数Table 2 Basic physical parameters of polypropylene fiber
    参考文献
    [1] 陆加越, 白坤, 张成君, 等.氧化镁矿粉复配加固砂土的强度特性[J/OL].土木与环境工程学报(中英文),2023:1-5[20230822].http://kns.cnki.net/kcms/detail/50.1218.TU.20230404.0934.002.html.LU Jiayue, BAI Kun, ZHANG Chengjun, et al. Strength characteristics of sand treated by magnesium oxide actived granulated blast furnace [J/OL]. Journal of Civil and Environmental Engineering, 2023:1-5[20230822]. http://kns.cnki.net/kcms/detail/50.1218.TU.20230404.0934.002.html.(in Chinese)
    [2] LIU J, FENG Q, WANG Y, et al. Experimental study on unconfined compressive strength of organic polymer reinforced sand[J]. International Journal of Polymer Science,2018,2018(1):1-18.
    [3] 李玉根, 张慧梅, 刘光秀, 等.风积砂混凝土基本力学性能及影响机理[J].建筑材料学报,2020,23(5):1212-1221.LI Yugen, ZHANG Huimei, LIU Guangxiu, et al. Mechanical properties and influence mechanism of a eolian sand concrete [J]. Journal of Building Materials,2020,23(5):1212-1221. (in Chinese)
    [4] 潘霞, 许成顺, 徐佳琳,等.饱和砂土循环液化模式影响因素试验研究[J].防灾减灾工程学报,2021,41(3):635-642.PAN Xia, XU Chengshun, XU Jialin, et al. Experimental study on influencing factors of circulating liquefaction model of saturated sand soil [J]. Journal of Disaster Prevention and Reduction Engineering, 2021,41(3):635-642. (in Chinese)
    [5] 刘云霄, 茌引引, 田威, 等. 不同膨胀剂对水泥基灌浆料性能的影响[J]. 建筑材料学报, 2022, 25(3):307-313.LIU Yunxiao, CHI Yinyin, TIAN Wei, et al. Effect of different expanders on properties of cement based grouting material[J]. Journal of Building Materials, 2022, 25(3):307-313. (in Chinese)
    [6] 李新明, 路广远, 张浩扬, 等.石灰偏高岭土改良粉砂土强度特性与微观机理[J].建筑材料学报,2021,24(3):648-655.LI Xinming, LU Guangyuan, ZHANG Haoyang, et al. Strength characteristics and micro-mechanism of lime-metakaolin modified silty soil [J]. Journal of Building Materials,2021,24(3):648-655. (in Chinese)
    [7] 李丽华, 岳雨薇, 肖衡林, 等.稻壳灰-水泥固化镉污染土性能及影响机制[J].岩土工程学报,2023,45(2):252-261.LI Lihua,YUE Yuwei,XIAO Henglin, et al.Performance and influence mechanism of Cd-contaminated soil solidified by rice husk ash-cement[J].Chinese Journal of Geotechnical Engineering,2023,45(2):252-261.(in Chinese)
    [8] 周海龙, 申向东.土壤固化剂的应用研究现状与展望[J].材料导报,2014,28(9):134-138.ZHOU Hailong, SHEN Xiangdong. Research status and prospect of soil curing agent application [J]. Materials Review,2014,28(9):134-138. (in Chinese)
    [9] 樊恒辉, 高建恩, 吴普特.土壤固化剂研究现状与展望[J].西北农林科技大学学报(自然科学版),2006,34(2):141-146,152.FAN Henghui, GAO Jian’en, WU Pute. Research status and prospect of soil curing agent [J]. Journal of Northwest A & F University (Natural Science),2006,34(2):141-146,152. (in Chinese)
    [10] 倪静, 王子腾, 耿雪玉.植物-生物聚合物联合法固土的试验研究[J].岩土工程学报,2020,42(11):2131-2137.NI Jing, WANG Ziteng, GENG Xueyu. Experimental study on soil consolidation by plant-biopolymer method [J]. Journal of Rock and Soil Engineering, 2020,42(11):2131-2137. (in Chinese)
    [11] 李明阳, 刘瑾, 梅红, 等.有机复合客土基材接触面剪切力学特性试验[J].哈尔滨工业大学学报,2023,55(6):134-142.LI Mingyang, LIU Jin, MEI Hong, et al. Shear mechanical properties of contact surface of organic composite clay substrates [J]. Journal of Harbin Institute of Technology,2023,55(6):134-142. (in Chinese)
    [12] 刘瑾, 白玉霞, 宋泽卓, 等.OPS型固化剂改良砂土工程特性试验研究[J].东南大学学报(自然科学版),2019,49(3):495-501.LIU Jin, BAI Yuxia, SONG Zezhuo, et al. Experimental study on engineering characteristics of sand improved by OPS curing agent [J]. Journal of Southeast University (Natural Science),2019,49(3):495-501. (in Chinese)
    [13] LIU J, QI X H, ZHANG D, et al. Study on the permeability characteristics of polyurethane soil stabilizer reinforced sand[J]. Advances in Materials Science and Engineering ,2017, (3):1-14.
    [14] 姚淇耀, 陆宸宇, 罗月静, 等.PE/PVA纤维海砂ECC的拉伸性能与本构模型[J].建筑材料学报,2022,25(9):976-983.YAO Qiyao, LU Chenyu, LUO Yuejing, et al. Tensile properties and constitutive model of PE/PVA fiber marine sand with ECC [J]. Journal of Building Materials,2022,25(9):976-983. (in Chinese)
    [15] 郝建斌, 魏兴梅, 姚婕, 等.麦秸秆加筋土的强度特性及细观结构分析[J].同济大学学报(自然科学版), 2019, 47(6):764-768,831.HAO Jianbin, WEI Xingmei, YAO Jie, et al. Strength characteristics and microstructure analysis of wheat straw reinforced soil [J]. Journal of Tongji University (Natural Science), 2019, 47(6):764-768,831. (in Chinese)
    [16] SILVEIRA M V,CASAGRANDE M D T.Effects of degradation of vegetal fibers on the mechanical behavior of reinforced sand[J].Geotechnical and Geological Engineering,2021, 39(12):3875-3887.
    [17] 郑少鹏, 牛开民, 田波, 等.聚合物乳液对水泥砂浆流变性能的影响[J].建筑材料学报,2017,20(6):962-969.ZHENG Shaopeng, NIU Kaimin, TIAN Bo, et al. Effect of polymer emulsion on rheological properties of cement mortar [J]. Journal of Building Materials,2017,20(6):962-969. (in Chinese)
    [18] 芦苇, 骆望, 李东波, 等.椰壳纤维加筋土遗址生态注浆材料性能研究[J].建筑材料学报,2024,27(1):90-98.LU Wei, LUO Wang, LI Dongbo, et al. Performance of coir fiber reinforced eco-grouting material used in earthen sites [J]. Journal of Building Materials,2024,27(1):90-98. (in Chinese)
    [19] 谢明君,温宇彤,徐玲琳等.木质素/玻璃纤维复合改性沥青混凝土路用性能提升效果研究[J].建筑材料学报,2023,26(11):1200-1206.XIE Mingjun, WEN Yutong, XU Linglin, et al. Composite modification with Cellulose fiber/glass fiber to enhance the pavement performance of asphalt concrete [J]. Journal of Building Materials,2023,26(11):1200-1206. (in Chinese)
    [20] 蒋明镜, 胡海军, 彭建兵.结构性黄土-维湿陷特性的离散元数值模拟[J].岩土力学,2013,34(4):1121-1130.JIANG Mingjing, HU Haijun, PENG Jianbing. Discrete element numerical simulation of one-dimensional collapsibility of structural loess [J]. Rock and Soil Mechanics,2013,34(4):1121-1130. (in Chinese)
    [21] 张程林, 周小文.砂土颗粒三维形状模拟离散元算法研究[J].岩土工程学报,2015,37(增刊1):115-119.ZHANG Chenglin, ZHOU Xiaowen. Research on discrete element algorithm for three-dimensional shape simulation of sand particles [J]. Chinese Journal of Geotechnical Engineering,2015,37(Suppl 1):115-119. (in Chinese)
    [22] 倪雪倩, 叶斌.砂土液化后液-固相变机理的单元试验与模拟[J].同济大学学报(自然科学版),2023,51(1):16-22.NI Xueqian, YE Bin. Unit test and simulation of liquid-solid phase transition mechanism of sand after liquefaction [J]. Journal of Tongji University (Natural Science), 2023,51(1):16-22. (in Chinese)
    [23] 高广运, 洪洋, 耿建龙, 等.饱和砂土液化判别与放大效应数值模拟研究[J].工程地质学报,2022,30(6):1874-1881.GAO Guangyun, HONG Yang, GENG Jianlong, et al. Numerical simulation of liquefaction discrimination and amplification effect of saturated sand [J]. Journal of Engineering Geology,2022,30(6):1874-1881. (in Chinese)
    [24] 叶斌, 宋思聪, 倪雪倩.制样方法对砂土液化力学性质影响的离散元模拟[J].同济大学学报(自然科学版),2022,50(7):998-1008.YE Bin, SONG Sicong, NI Xueqian. Discrete element simulation of effects of sample preparation methods on mechanical properties of sand liquefaction [J]. Journal of Tongji University (Natural Science),2022,50(7):998-1008. (in Chinese)
    [25] 周林禄, 苏雷, 凌贤长, 等.纤维加筋砂土抗液化试验与数值模拟[J]. 工程地质学报, 2021, 29(5):1567-1576.ZHOU Linlu, SU Lei, LING Xianchang, et al. Test and numerical simulation of resistance to liquefaction of fiber-reinforced sand [J]. Chinese Journal of Engineering Geology, 2021, 29(5):1567-1576. (in Chinese)
    [26] 唐朝生, 顾凯.聚丙烯纤维和水泥加固软土的强度特性[J].土木工程学报,2011,44(增刊2):5-8.TANG Chaosheng, GU Kai. Strength characteristics of soft soil reinforced by polypropylene fiber and cement [J]. Journal of Civil Engineering,2011,44(Suppl 2):5-8. (in Chinese)
    [27] 白玉霞, 刘瑾, 宋泽卓, 等.高聚物改良砂土强度特性和变形特征试验研究[J/OL].复合材料学报,2024:1-17[20240514].https://doi.org/10.13801/j.cnki.fhclxb.20231129.003.BAI Yuxia, LIU Jin, SONG Zetzhuo, et al. Experimental study on strength and deformation characteristics of sand improved by high polymer [J/OL]. Acta Materiae Compositae Sinica,2024:1-17[20240514].https://doi.org/10.13801/j.cnki.fhclxb.20231129.003.(in Chinese)
    [28] BAI Y X, LIU J, CUI Y J, et al. Mechanical behavior of polymer stabilized sand under different temperatures[J].Construction and Building Materials,2021, 290:123237.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄庭伟,刘瑾,朱旭芬,车文越,孙梦雅.高聚物-纤维复合改良砂土的强度特性与变形机理[J].建筑材料学报,2024,27(8):744-756

复制
分享
文章指标
  • 点击次数:69
  • 下载次数: 4945
  • HTML阅读次数: 13
  • 引用次数: 0
历史
  • 收稿日期:2023-10-05
  • 最后修改日期:2023-12-18
  • 在线发布日期: 2024-09-03
文章二维码