低吸湿泡沫混凝土的设计及物理性能
作者:
作者单位:

1.中交路桥建设有限公司,北京 101100;2.广东慧图资环科技发展有限公司,广东 广州 510510;3.华南农业大学 水利与土木工程学院,广东 广州 510642

作者简介:

杨 刚(1980—),男,湖北孝感人,中交路桥建设有限公司高级工程师,硕士.E-mail:371681108@qq.com

通讯作者:

李庚英(1970—),女,湖南邵东人,华南农业大学教授,博士生导师,博士.E-mail:ligengying@scau.edu.cn

中图分类号:

TU528.2

基金项目:

广东省普通高校重点领域专项及创新团队项目(2019KZDZX2001,2023KCXTD005);国家自然科学基金面上项目(52178209)


Design and Physical Properties of Foamed Concrete with Low Hygroscopicity
Author:
Affiliation:

1.Road & Bridge International Co., Ltd., Beijing 101100, China;2.Guangdong Huitu Resources and Environmental Technology Development Co., Ltd., Guangzhou 510510, China;3.College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了构筑低吸湿泡沫混凝土并再生利用热解污泥,以表观密度、导热系数和28 d抗压强度为指标,采用正交设计试验确定了热解污泥粉、甲基硅醇钠和纳米二氧化硅的合理掺量,进而研究了最优组合泡沫混凝土的物理性能. 结果表明:以表观密度和导热系数为衡量指标时,热解污泥粉、甲基硅醇钠和纳米二氧化硅的合理掺量分别为30%、1.5%、3.0%,而以28 d抗压强度为衡量指标时,三者的合理掺量分别为10%、0.5%、3.0%;1.5%的甲基硅醇钠使得泡沫混凝土的吸湿性降低了90.6%~95.5%;最优组合泡沫混凝土的导热系数、表观密度和强度满足FC5自保温泡沫混凝土的基本要求.

    Abstract:

    In order to construct the foamed concrete with low hygroscopicity meanwhile to recycle pyrolysis sludge ash(PSA) effectively, the reasonable dosage of PSA, sodium methyl-silanol(SMS) and nano-SiO2 was studied by using orthogonal design in which the apparent dry density, thermal conductivity and 28 d compressive strength were set as the measuring indicators. Then the physical properties of the foamed concrete with optimal proportion were investigated. The results show that, if setting the apparent dry density and thermal conductivity as the measuring indicators, the reasonable dosage of PSA, SMS and nano-SiO2 are 30%, 1.5% and 3.0%, respectively. If taking the 28 d compressive strength as the measuring indicator, the reasonable dosage of these three raw materials are 10%, 0.5% and 3.0% respectively. In addition, the results show the addition of 1.5% SMS reduces the hygroscopicity of the foamed concrete by 90.6%-95.5% as compared to the control one without SMS. The thermal conductivity, density and strength of the foamed concrete with optimal proportion meet the basic requirements of FC5 self-insulating blocks.

    表 2 正交试验方案Table 2 Scheme of orthogonal test
    表 3 正交试验结果Table 3 Orthogonal test results
    图1 导热系数、28 d抗压强度与表观密度的关系Fig.1 Relationship between thermal conductivity, 28 d compressive strength and apparent density
    图2 甲基硅醇钠的引气作用和憎水效果Fig.2 Entraining-air and hydrophobic effect of sodium methyl-silanolate
    图3 泡沫混凝土的干缩性Fig.3 Dry shrinkage performance of foamed concrete
    表 6 泡沫混凝土的吸湿性和热工特性Table 6 Hygroscopicity and thermal characteristics of foamed concrete
    表 1 水泥、热解污泥和纳米二氧化硅的化学组成Table 1 Chemical compositions(by mass) of cement, pyrolytic sludge and nano-SiO2Unit:%
    表 5 优组合及未掺甲基硅醇钠时泡沫混凝土的抗压和抗折强度Table 5 Compressive and flexural strength of foamed concretes with or without sodium methyl-silanolate
    参考文献
    [1] SONG R Z, LIU D, PAN Y Q, et al. Container farms: Energy modeling considering crop growth and energy-saving potential in different climates[J]. Journal of Cleaner Production, 2023, 420:1-13.
    [2] 陈士博.泡沫混凝土孔结构测试与图像分析法应用研究[D].泰安:山东农业大学,2022.CHEN Shibo. Research on pore structure tests and image analysis method application for foamed concrete[D]. Taian:Shandong Agricultural University, 2022. (in Chinese)
    [3] 党钧陶, 汤小松, 肖建庄, 等. 碱激发泡沫混凝土早期稳定行为及机理[J].建筑材料学报, 2023, 26(7):746-754.DANG Juntao, TANG Xiaosong, XIAO Jianzhuang, et al. Early stabilization behavior and mechanism of alkali-activated foamed concrete[J]. Journal of Building Materials, 2023, 26(7):746-754. (in Chinese)
    [4] 张磊, 张静, 张颖, 等. 生物基发泡剂泡沫特征及其对泡沫混凝土性能的影响[J]. 建筑材料学报, 2020, 23(3):589-595.ZHANG Lei, ZHANG Jing, ZHANG Ying, et al. Foam characteristics of biological based foaming agent and its effect on properties of foam concrete[J]. Journal of Building Materials, 2020, 23(3):589-595. (in Chinese)
    [5] JERMAN M, KEPPERT M, VYBORNY J, et al. Moisture and heat transport and storage characteristics of two commercial autoclaved aerated concretes[J]. Cement Wapno Beton, 2011, 16(1):18-29.
    [6] 吴国振.影响保温工程热损失的因素分析[J]. 节能技术, 1999, 17(5):7-8, 21.WU Guozheng. Analyzing factor on heat lose of thermal insulating engingeering[J]. Energy Conservation Technology, 1999, 17(5):7-8, 21. (in Chinese)
    [7] 孙广平, 朱洪威, 程军旺, 等. 有机硅憎水剂对透水混凝土性能影响研究[J]. 公路, 2023, 68(4):330-336.SUN Guangping, ZHU Hongwei, CHENG Junwang, et al. Research on the effect of organic silicon hydrophobic agent on performance of pervious concrete[J]. Highway, 2023, 68(4):330-336. (in Chinese)
    [8] 李光辉,宋鸽. 硅烷基聚合物防水粉末对早强砂浆性能影响的试验研究[J]. 粉煤灰综合利用, 2023, 37(4):69-73,111.LI Guanghui,SONG Ge. Experimental research on effect of silane-based polymer powder on properties of early-strength mortar[J]. Fly Ash Comprehensive Utilization, 2023, 37(4):69-73,111. (in Chinese)
    [9] 李书进, 钱红萍, 黄小红, 等. 憎水剂对蒸压加气混凝土吸水特性的影响[J]. 建筑材料学报, 2017, 20(6):970-974, 980.LI Shujin, QIAN Hongping, HUANG Xiaohong, et al. Effect of water repellent on the water absorption properties of autoclaved aerated concrete[J]. Journal of Building Materials, 2017, 20(6):970-974, 980. (in Chinese)
    [10] LI Q, ZHONG Z P, DU H R, et al. Influence of silica-aluminum materials on heavy metals release during paper sludge pyrolysis:Experimental and theoretical studies[J]. Waste Management, 2023, 170:177-192.
    [11] WANG X Q, YU X W, LI Z Q, et al. Dynamic responses of a waste sludge modified by magnesium-cement-based multiphase cementitious material under influences of temperature and moisture cycles[J]. Construction and Building Materials, 2023, 402:133054.
    [12] YU J, ZHANG M, LI G Y, et al. Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar[J]. Construction and Building Materials, 2020, 239:117853.
    [13] 姜骞, 谢德擎. 纳米二氧化硅透水混凝土新拌流变及硬化性能[J]. 建筑材料学报, 2019, 22(6):866-871.JIANG Qian, XIE Deqing. Rheological and hardened properties of nanosilica blended pervious concrete[J]. Journal of Building Materials, 2019, 22(6):866-871. (in Chinese)
    [14] 罗素蓉, 林倩, 李炜源, 等. 纳米材料改性再生骨料混凝土断裂性能[J]. 建筑材料学报, 2022, 25(11):1151-1159.LUO Surong, LIN Qian, LI Weiyuan, et al. Fracture performance of recycled aggregate concrete modified with nanomaterials[J]. Journal of Building Materials, 2022, 25(11):1151-1159. (in Chinese)
    [15] MEHTA P K, MONTEIRO P J M. Concrete:Microstructure, properties, and materials[M]. 4th ed. New York:McGraw-Hill Education, 2014.
    [16] 徐晶,王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型[J]. 硅酸盐学报,2018,46(8):1053-1058.XU Jing, WANG Xianzhi. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling[J]. Journal of the Chinese Ceramic Society, 2018,46(8):1053-1058. (in Chinese)
    [17] 杜渊博,葛勇. 水泥石导热系数的计算模型[J]. 硅酸盐学报,2022,50(2):466-472.DU Yuanbo, GE Yong. Modeling of effective thermal conductivity of cement paste[J]. Journal of the Chinese Ceramic Society, 2022, 50(2):466-472. (in Chinese)
    相似文献
    引证文献
引用本文

杨刚,吕彦松,曾广鸿,李晓梅,李庚英.低吸湿泡沫混凝土的设计及物理性能[J].建筑材料学报,2024,27(7):653-658

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-19
  • 最后修改日期:2023-11-16
  • 在线发布日期: 2024-08-09
文章二维码