隧道衬砌背后小尺寸空洞用聚氨酯注浆材料探究
作者:
作者单位:

1.西南交通大学 土木工程学院,四川 成都 610031;2.四川川交路桥有限责任公司,四川 广汉 618300

作者简介:

曹卓颖(1998—),女,山西太原人,西南交通大学硕士生.E-mail:1595087474@qq.com

通讯作者:

崔圣爱(1981—),女,山东费县人,西南交通大学教授,博士生导师, 博士.E-mail:shengai_cui@126.com

中图分类号:

U454

基金项目:

国家自然科学基金资助项目(52278277);成都市科技计划项目(2021-YF05-00138-SN)


Exploration of Polyurethane Grouting Materials for Small-Size Cavity behind Tunnel Lining
Author:
Affiliation:

1.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;2.Sichuan Chuanjiao Road and Bridge Co., Ltd., Guanghan 618300, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探索适用于隧道衬砌背后小尺寸空洞的高性能注浆材料,制备了11组聚氨酯注浆材料,研究了其力学性能,提出了改进本构方程,并采用灰色关联进行综合评价.结果表明:1.16%~1.94%催化剂、3.80%~5.60%扩链剂可有效提高聚氨酯的力学性能;高相对分子质量多元醇的引入降低了聚氨酯的压缩强度和拉伸强度,却显著改善了其黏结强度;基于唯象模型提出的本构模型可准确表征聚氨酯的压缩变形;基于灰色关联得到聚氨酯的最佳配合比为异氰酸酯、相对分子质量为8 000的多元醇及500的多元醇质量比25∶2∶23,催化剂掺量1.16%,扩链剂掺量1.94%,此配合比下聚氨酯综合性能最佳.

    Abstract:

    In order to explore high-performance grouting materials suitable for small-size cavity behind tunnel lining, 11 groups of polyurethane grouting materials were prepared, and their mechanical properties were studied. An improved constitutive equation was proposed, and the grey correlation was used for comprehensive evaluation. The results show that 1.16 %-1.94 % of catalyst and 3.80%-5.60% of chain extender can effectively improve the mechanical properties of polyurethane. The introduction of high molecular weight polyols reduces the compressive strength and tensile strength of polyurethane, but significantly improves its bonding strength. The constitutive model based on the phenomenological model can accurately characterize the compressive deformation of polyurethane. Based on the grey correlation, the optimal mix proportion of polyols, isocyanates and a relative molecular weight of 8 000 and 500 is 25:2:23, with a catalyst content of 1.16% and a chain extender content of 1.94%. Under this optimal mix ratio, the polyurethane has the best comprehensive performance.

    表 5 各组聚氨酯的灰色关联度向量Table 5 Grey correlation degree vector of each group of polyurethanes
    表 3 聚氨酯的拉伸强度和拉伸弹性模量Table 3 Tensile strength and tensile elastic modulus of polyurethanes
    表 4 新本构模型表征聚氨酯压缩应力-应变的拟合参数Table 4 Fitting parameters of new constitutive model of compressive stress-strain of polyarethanes
    表 2 聚氨酯的抗压强度和抗压弹性模量Table 2 Compressive strength and compressive elastic modulus of polyurethanes
    图1 聚氨酯的压缩应力-应变曲线Fig.1 Compressive stress-strain diagram of polyurethanes
    图2 聚氨酯的拉伸应力-应变曲线Fig.2 Tensile stress-strain diagram of polyurethanes
    图3 聚氨酯的黏结强度Fig.3 Bond strength of polyurethanes
    图4 模型拟合结果Fig.4 Model fitting results
    图5 新本构模型拟合聚氨酯压缩应力-应变曲线Fig.5 Compressive stress-strain curves of polyuretha fitted by new constitutive model
    表 1 聚氨酯的配合比Table 1 Mix proportions of polyurethanes
    参考文献
    相似文献
    引证文献
引用本文

曹卓颖,侯勇,杜鹏,雷杨,崔圣爱.隧道衬砌背后小尺寸空洞用聚氨酯注浆材料探究[J].建筑材料学报,2024,27(7):645-652

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-18
  • 最后修改日期:2023-10-26
  • 在线发布日期: 2024-08-09
文章二维码