海水海砂再生混凝土受压动力本构模型
作者:
作者单位:

福州大学 土木工程学院,福建 福州 350116

作者简介:

张青天(1993—),男,湖北武汉人,福州大学助理研究员,硕士生导师,博士.E-mail:zqt@fzu.edu.cn

通讯作者:

张凯建(1989—),男,山东昌乐人,福州大学副教授,硕士生导师,博士.E-mail:kaijian.zhang@fzu.edu.cn

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(52008304);福建省自然科学基金资助项目(2023J05021);福建省中青年教师教育科研资助项目(科技类)(JAT210040);福州大学校基金资助项目(GXRC21059, GXRC21060)


Dynamic Constitutive Model of Seawater and Sea Sand Recycled Aggregate Concrete under Compression
Author:
Affiliation:

College of Civil Engineering, Fuzhou University, Fuzhou 350116, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    考虑贝壳含量、龄期等因素,对不同加载应变率下的海水海砂再生混凝土(SSRAC)试件开展了单轴受压应力-应变曲线试验.结果表明:600 d时,与普通混凝土(NAC)相比,SSRAC峰值应力和峰值应变分别提高了10.4%、23.2%,弹性模量降低了29.1%;当掺入贝壳颗粒后,SSRAC应变率敏感性增加;结合试验以及文献数据,基于GB50010模型,考虑不同应变率下特征参数的动态增大系数,提出了适用于中低应变率(10-5~10-1 s-1)下SSRAC受压动力本构模型,并对其曲线特征进行了机理解释.

    Abstract:

    A test of the uniaxial compressive stress-strain curve under different strain rates was carried out on seawater and sea sand recycled aggregate concrete(SSRAC) considering different ages and shell contents. The results show that the 600 d peak stress and peak strain of SSRAC increase by 10.4% and 23.2%, respectively, as compared with those of natural aggregate concrete(NAC). However, the elastic modulus of SSRAC decreases by 29.1%. The strain rate sensitivity of SSRAC increases with the increase in shell content. Then, based on the model in GB50010, a dynamic constitutive model is proposed for SSRAC under medium and low strain rates (from 10-5 s-1 to 10-1 s-1) considering the dynamic increase factor of characteristic parameters. Finally, mechanism analyses of the characteristic of its stress-strain curves are given.

    表 6 各应变率下的形状参数Table 6 Shape parameters with different strain rates
    表 2 混凝土配合比Table 2 Mix proportions of concretes
    表 5 拟合参数Table 5 Fitted parameters
    表 1 骨料的材料性能Table 1 Material properties of aggregates[15-16]
    图1 不同混凝土特征参数之间的比值Fig.1 Ratios of characteristic parameters between different concretes
    图2 不同混凝土特征参数的动态增大系数Fig.2 Dynamic increase factor of characteristic points of different concretes
    图3 试件SSRAC-5-120 d和SSRAC-5-600 d的归一化应力-应变曲线模型Fig.3 Normalized stress-strain curve models for SSRAC-5-120 d and SSRAC-5-600 d specimens
    图4 峰值应力和弹性模量的拟合曲线Fig.4 Fitted curve of peak stress versus elastic modulus
    图5 峰值应力和峰值应变的拟合曲线Fig.5 Fitted curve of peak stress versus peak strain
    图6 峰值应力和形状参数的拟合曲线Fig.6 Fitted curve of peak stress versus αc
    图7 不同应变率下SSRAC和H-SSRAC的预测应力-应变曲线Fig.7 Predicted stress-strain curves of SSRAC and H-SSRAC at different strain rates
    图8 应力-应变曲线模型平均值曲线Fig.8 Mean value curves modified by stress-strain model
    图9 RAC和SSRAC的微观形貌Fig.9 Microstructure of RAC and SSRAC
    图10 各应变率下应力-应变曲线模型平均值曲线Fig.10 Mean value curves modified by stress-strain model with different strain rates
    表 4 不同龄期下SSRAC和RAC的强度调整系数Table 4 Strength adjustment factor of SSRAC and RAC at different ages
    参考文献
    [1] BENDIXEN M, BEST J, HACKNEY C, et al. Time is running out for sand[J]. Nature, 2019, 571(7763):29-31.
    [2] 冯兴国, 卢潇, 卢向雨, 等. 海水拌制珊瑚混凝土中不锈钢钢筋的锈蚀速率[J].建筑材料学报, 2021, 24(6):1322-1327.FENG Xingguo, LU Xiao, LU Xiangyu, et al. Corrosion rate of stainless steel rebar in coral concrete prepared with seawater[J]. Journal of Building Materials, 2021, 24(6):1322-1327. (in Chinese)
    [3] ZHAO Y F, HU X, SHI C J, et al. A review on seawater sea-sand concrete:Mixture proportion, hydration, microstructure and properties[J]. Construction and Building Materials, 2021, 295:123602.
    [4] 高文昌,张欢,耿悦, 等.再生混凝土棱柱体与立方体抗压强度关系模型[J].建筑材料学报, 2022, 25(11):1121-1127.GAO Wenchang, ZHANG Huan, GENG Yue, et al. Model for the relationship between prism and cube compressive strengths of recycled aggregate concrete[J]. Journal of Building Materials, 2022, 25(11):1121-1127. (in Chinese)
    [5] HUANG Y J, WANG T C, SUN H L, et al. Mechanical properties of fibre reinforced seawater sea-sand recycled aggregate concrete under axial compression[J]. Construction and Building Materials, 2022, 331:127338.
    [6] XIAO J Z, ZHANG Q T, ZHANG P, et al. Mechanical behavior of concrete using seawater and sea-sand with recycled coarse aggregates[J]. Structural Concrete, 2019, 20 (5):1631-1643.
    [7] ZHANG K J, XIAO J Z, ZHANG Q T, et al. Experimental study on stress-strain curves of seawater sea-sand concrete under uniaxial compression with different strain rates[J]. Advances in Structural Engineering, 2021, 24(6):1124-1137.
    [8] ZHOU Y W, GAO H, HU Z H, et al. Ductile, durable, and reliable alternative to FRP bars for reinforcing seawater sea-sand recycled concrete beams:Steel/FRP composite bars[J]. Construction and Building Materials, 2020, 269:121264.
    [9] HUANG Y J, HE X J, WANG Q, et al. Mechanical properties of sea sand recycled aggregate concrete under axial compression[J]. Construction and Building Materials, 2018, 175:55-63.
    [10] 周登飞. 海水海砂再生混凝土轴压力学性能试验研究[D]. 广州:广东工业大学, 2020.ZHOU Dengfei. Experimental study on axial compressive properties of seawater and sea sand recycled concrete[D]. Guangzhou:Guangdong University of Technology, 2020. (in Chinese).
    [11] LI L, XIAO J Z, POON C S. Dynamic compressive behavior of recycled aggregate concrete[J]. Materials and Structures, 2016, 49(11):4451-4462.
    [12] XIAO J Z, LI L, SHEN L M, et al. Compressive behaviour of recycled aggregate concrete under impact loading[J]. Cement and Concrete Research, 2015, 71:46-55.
    [13] XIAO J Z, LI L, SHEN L M, et al. Effects of strain rate on mechanical behavior of modeled recycled aggregate concrete under uniaxial compression[J]. Construction and Building Materials, 2015, 93:214-222.
    [14] 肖建庄,袁俊强,李龙. 模型再生混凝土单轴受压动态力学特性试验[J]. 建筑结构学报, 2014, 35(3):201-207.XIAO Jianzhuang, YUAN Junqiang, LI Long. Experimental study on dynamic mechanical behavior of modeled recycled aggregate concrete under uniaxial compression[J]. Journal of Building Structures, 2014, 35(3):201-207. (in Chinese).
    [15] 张凯建,肖建庄,张青天. 海水海砂再生混凝土单轴受压应力-应变全曲线[J]. 同济大学学报(自然科学版), 2021, 49(12):1738-1745.ZHANG Kaijian, XIAO Jianzhuang, ZHANG Qingtian. Complete stress-strain curves of seawater sea sand recycled aggregate concrete under uniaxial compression[J]. Journal of Tongji University(Natural Science), 2021, 49(12):1738-1745. (in Chinese).
    [16] XIAO J Z, ZHANG K J, ZHANG Q T. Strain rate effect on compressive stress-strain curves of recycled aggregate concrete with seawater and sea sand[J]. Construction and Building Materials, 2021, 300:124014.
    [17] Standard practice for the preparation of substitute ocean water:ASTM D1141<标准号_FZ pub-id-type="std-designation">-98(2013)[S].
    [18] Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression:ASTM C469/C469M<标准号_FZ pub-id-type="std-designation">-2014 [S].
    [19] Eurocode 2:Design of concrete structures—Part 1-1:General rules and rules for buildings:EN 1992-1-1/A1-2014[S].
    [20] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社, 2015.Ministry of Housing and Urban Rural Development of the People’s Republic of China. Code for design of concrete structures:GB 50010—2010[S]. Beijing:China Architecture Press, 2015. (in Chinese).
    [21] XIAO J Z, LI J, ZHANG C. Mechanical properties of recycled aggregate concrete under uniaxial loading[J]. Cement and Concrete Research, 2005, 35(6):1187-1194.
    [22] XIAO J Z, ZHANG K J, AKBARNEZHAD A. Variability of stress-strain relationship for recycled aggregate concrete under uniaxial compression loading[J]. Journal of Cleaner Production, 2018, 181:753-771.
    [23] 肖建庄,张鹏,张青天,等. 海水海砂再生混凝土的基本力学性能[J]. 建筑科学与工程学报, 2018, 35(2):16-22.XIAO Jianzhuang, ZHANG Peng, ZHANG Qingtian, et al. Basic mechanical properties of seawater sea-sand recycled concrete[J]. Journal of Architecture and Civil Engineering, 2018, 35(2):16-22. (in Chinese).
    [24] CEB-FIP. Fib model code for concrete structures 2010[S].
    [25] XIAO J Z, LI W G, CORR D J, et al. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete[J]. Cement and Concrete Research, 2013, 52:82-99.
    [26] PAN D, YASEEN S A, CHEN K Y, et al. Study of the influence of seawater and sea sand on the mechanical and microstructural properties of concrete[J]. Journal of Building Engineering, 2021, 42:103006.
    [27] 刘伟,蒲正霖,孙红芳,等. 海砂中氯离子含量的影响因素研究[J]. 建筑材料学报, 2016, 19(5):921-925.LIU Wei, PU Zhenglin, SUN Hongfang, et al. Influence factors of chloride content in dredged marine sand[J]. Journal of Building Materials, 2016, 19(5):921-925. (in Chinese).
    [28] 李龙,肖建庄,黄凯文. 再生混凝土力学性能的应变率敏感性数值模拟[J]. 东南大学学报(自然科学版), 2017, 47(4):776-784.LI Long, XIAO Jianzhuang, HUANG Kaiwen. Numerical simulation on strain-rate sensitivity of mechanical properties of recycled aggregate concrete[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(4):776-784. (in Chinese).
    引证文献
引用本文

张青天,张凯建.海水海砂再生混凝土受压动力本构模型[J].建筑材料学报,2024,27(7):580-588

复制
分享
文章指标
  • 点击次数:182
  • 下载次数: 4154
  • HTML阅读次数: 8
  • 引用次数: 0
历史
  • 收稿日期:2023-09-13
  • 最后修改日期:2023-12-14
  • 在线发布日期: 2024-08-09
文章二维码