海水海砂再生混凝土受压动力本构模型
作者:
作者单位:

福州大学 土木工程学院,福建 福州 350116

作者简介:

张青天(1993—),男,湖北武汉人,福州大学助理研究员,硕士生导师,博士.E-mail:zqt@fzu.edu.cn

通讯作者:

张凯建(1989—),男,山东昌乐人,福州大学副教授,硕士生导师,博士.E-mail:kaijian.zhang@fzu.edu.cn

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(52008304);福建省自然科学基金资助项目(2023J05021);福建省中青年教师教育科研资助项目(科技类)(JAT210040);福州大学校基金资助项目(GXRC21059, GXRC21060)


Dynamic Constitutive Model of Seawater and Sea Sand Recycled Aggregate Concrete under Compression
Author:
Affiliation:

College of Civil Engineering, Fuzhou University, Fuzhou 350116, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    考虑贝壳含量、龄期等因素,对不同加载应变率下的海水海砂再生混凝土(SSRAC)试件开展了单轴受压应力-应变曲线试验.结果表明:600 d时,与普通混凝土(NAC)相比,SSRAC峰值应力和峰值应变分别提高了10.4%、23.2%,弹性模量降低了29.1%;当掺入贝壳颗粒后,SSRAC应变率敏感性增加;结合试验以及文献数据,基于GB50010模型,考虑不同应变率下特征参数的动态增大系数,提出了适用于中低应变率(10-5~10-1 s-1)下SSRAC受压动力本构模型,并对其曲线特征进行了机理解释.

    Abstract:

    A test of the uniaxial compressive stress-strain curve under different strain rates was carried out on seawater and sea sand recycled aggregate concrete(SSRAC) considering different ages and shell contents. The results show that the 600 d peak stress and peak strain of SSRAC increase by 10.4% and 23.2%, respectively, as compared with those of natural aggregate concrete(NAC). However, the elastic modulus of SSRAC decreases by 29.1%. The strain rate sensitivity of SSRAC increases with the increase in shell content. Then, based on the model in GB50010, a dynamic constitutive model is proposed for SSRAC under medium and low strain rates (from 10-5 s-1 to 10-1 s-1) considering the dynamic increase factor of characteristic parameters. Finally, mechanism analyses of the characteristic of its stress-strain curves are given.

    表 6 各应变率下的形状参数Table 6 Shape parameters with different strain rates
    表 2 混凝土配合比Table 2 Mix proportions of concretes
    表 5 拟合参数Table 5 Fitted parameters
    表 1 骨料的材料性能Table 1 Material properties of aggregates[15-16]
    图1 不同混凝土特征参数之间的比值Fig.1 Ratios of characteristic parameters between different concretes
    图2 不同混凝土特征参数的动态增大系数Fig.2 Dynamic increase factor of characteristic points of different concretes
    图3 试件SSRAC-5-120 d和SSRAC-5-600 d的归一化应力-应变曲线模型Fig.3 Normalized stress-strain curve models for SSRAC-5-120 d and SSRAC-5-600 d specimens
    图4 峰值应力和弹性模量的拟合曲线Fig.4 Fitted curve of peak stress versus elastic modulus
    图5 峰值应力和峰值应变的拟合曲线Fig.5 Fitted curve of peak stress versus peak strain
    图6 峰值应力和形状参数的拟合曲线Fig.6 Fitted curve of peak stress versus αc
    图7 不同应变率下SSRAC和H-SSRAC的预测应力-应变曲线Fig.7 Predicted stress-strain curves of SSRAC and H-SSRAC at different strain rates
    图8 应力-应变曲线模型平均值曲线Fig.8 Mean value curves modified by stress-strain model
    图9 RAC和SSRAC的微观形貌Fig.9 Microstructure of RAC and SSRAC
    图10 各应变率下应力-应变曲线模型平均值曲线Fig.10 Mean value curves modified by stress-strain model with different strain rates
    表 4 不同龄期下SSRAC和RAC的强度调整系数Table 4 Strength adjustment factor of SSRAC and RAC at different ages
    参考文献
    相似文献
    引证文献
引用本文

张青天,张凯建.海水海砂再生混凝土受压动力本构模型[J].建筑材料学报,2024,27(7):580-588

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-13
  • 最后修改日期:2023-12-14
  • 在线发布日期: 2024-08-09
文章二维码