活性MgO碳化固化疏浚底泥的影响因素及作用机理
作者:
作者单位:

1.山东建筑大学 交通工程学院,山东 济南 250101;2.山东易方达建设管理集团有限公司, 山东 济南 250014

作者简介:

孔祥辉(1978—),男,山东青岛人,山东建筑大学副教授,硕士生导师,博士.E-mail:kongxh@sdjzu.edu.cn

通讯作者:

张思峰(1976—),男,山东济宁人,山东建筑大学教授,硕士生导师,博士.E-mail:sddxzsf@163.com

中图分类号:

U416.1

基金项目:

山东省重点研发计划项目(重大科技创新工程)(2020CXGC011404)


Influencing Factors and Mechanism of Dredged Sediment Carbonated and Solidified with Reactive MgO
Author:
Affiliation:

1.School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China;2.Shandong Yifangda Construction Management Group Co., Ltd., Jinan 250014, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用MgO碳化技术对疏浚底泥进行固化处理,通过强度试验和微观特性试验,系统分析了活性MgO碳化固化底泥的主要影响因素及微观机理.结果表明:增加活性MgO掺量能生成较多的水化产物和碳化产物,使得底泥强度明显增大;土体含水率与压实度能够影响CO2在土体内部的运移,二者增大导致CO2吸附量减少,从而影响底泥的碳化固化效果;长时间的碳化作用导致部分碳化产物发生变质反应,底泥强度随碳化时间的延长呈先增后减趋势;水化产物和碳化产物对土颗粒的包裹、胶结和孔隙填充是活性MgO碳化固化底泥的主要作用机理.

    Abstract:

    MgO carbonization technology was used to solidify the dredged sediment. The main influencing factors and micro-mechanism of reactive MgO carbonization solidification of sediment were systematically analyzed through strength tests and microscopic characteristic tests. The results indicate that more hydration products and carbonization products can be generated with the increase of reactive MgO content, and the strength of sediment increases significantly. The water content and compaction degree are two main factors that affect the transport of CO2 in soil, and the increase of both will lead to the decrease of CO2 absorption, thus affecting the carbonization and solidification effect of sediment. The long-term carbonization can cause some carbonization products to undergo metamorphic reaction, so the strength of sediment increases first and then decreases with the increase of carbonization time. The encapsulation, cementation and pore filling of soil particles by hydration products and carbonization products are the main mechanism of reactive MgO carbonization solidification of sediment.

    表 2 活性MgO的化学组成Table 2 Chemical composition(by mass) of reactive MgO
    表 3 碳化固化试验方案Table 3 Carbonization solidification test scheme
    表 1 疏浚底泥的基本物理力学性能Table 1 Basic physical and mechanical properties of dredged sediment
    图1 疏浚底泥颗粒级配曲线Fig.1 Particle gradation curve of dredged sediment
    图2 碳化釜示意图Fig.2 Schematic diagram of carbonization kettle
    图3 总体试验流程图Fig.3 Overall test flow chart
    图4 活性MgO掺量对试件无侧压抗压强度和CO2吸附能力的影响Fig.4 Effect of reactive MgO content on unconfined compression strength and CO2 absorption capacity of specimens
    图5 土体含水率对试件无侧限抗压强度与CO2吸附能力的影响Fig.5 Effect of soil water content on unconfined compression strength and CO2 absorption capacity of specimens
    图6 土体压实度对试件无侧限抗压强度与CO2吸附能力的影响Fig.6 Effect of compaction degree on unconfined compression strength and CO2 absorption capacity of specimens
    图7 碳化时间对试件无侧限抗压强度与CO2吸附能力的影响Fig.7 Effect of carbonization time on unconfined compression strength and CO2 absorption capacity of specimens
    图8 各试样的XRD图谱Fig.8 XRD patterns of samples
    图9 未碳化和碳化底泥的EDS能谱分析Fig.9 EDS spectrum analyses of uncarbonated and carbonated sediment
    图10 天然疏浚底泥、未碳化和碳化底泥的SEM照片Fig.10 SEM images of natural dredged sediment, uncarbonated and carbonated sediment
    图11 天然疏浚底泥、未碳化和碳化底泥的压汞试验结果Fig.11 MIP test results of natural dredged sediment, uncarbonated and carbonated sediment
    图12 MgO碳化固化微观机制模型Fig.12 Micro-mechanism model of MgO carbonization and solidification
    参考文献
    [1] KONG X H, ZHANG Z B, LIANG Y P, et al. Experimental study on solidified dredged sediment with MgO and industrial waste residue[J]. Construction and Building Materials, 2023,366:130105.
    [2] LANG L, LIU N, CHEN B. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2[J]. Construction and Building Materials, 2020,230:116971.
    [3] 钟煜清, 蔡光华, 王俊阁, 等. GGBS-活性MgO碳化/稳定化锌污染土的强度及电导率特性试验研究[J]. 岩土工程学报, 2021, 43(增刊2):221-224.ZHONG Yuqing, CAI Guanghua, WANG Junge, et al. Strength and electrical conductivity characteristics of zinc contaminated soil carbonated/stabilized with GGBS-reactive MgO[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(Suppl 2):221-224. (in Chinese)
    [4] 王倩, 武志红, 张国丽, 等. MgO活性对MgO-SiO2-H2O胶凝体系的影响[J]. 建筑材料学报, 2020, 23(4):771-777.WANG Qian, WU Zhihong, ZHANG Guoli, et al. Effect of MgO reactivity on MgO-SiO2-H2O cementitious system[J]. Journal of Building Materials, 2020, 23(4):771-777. (in Chinese)
    [5] 崔潮, 孙小惠, 王岚, 等. 活性MgO对碱-矿渣-偏高岭土基地聚物干缩特性的影响[J]. 建筑材料学报, 2023, 26(6):579-586.CUI Chao, SUN Xiaohui, WANG Lan, et al. Influence of activated MgO on drying shrinkage of alkali-slag-metakaolin based geopolymer[J]. Journal of Building Materials, 2023, 26(6):579-586. (in Chinese)
    [6] HARRISON J. New cements based on the addition of reactive magnesia to Portland cement with or without added pozzolan[C]// Proceedings of the CIA Conference:Concrete in the Third Millennium. Brisbane:CIA, 2003.
    [7] SHI C J, WU Z M, CAO Z J, et al. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry[J]. Cement and Concrete Composites, 2018, 86:130-138.
    [8] 曹伟达, 杨全兵. 碳化养护对钢渣-熟石灰固碳砖耐久性的影响[J]. 建筑材料学报, 2023, 26(3):324-331.CAO Weida, YANG Quanbing. Effect of carbonation curing on durability of carbon fixing steel slag-slaked lime brick[J]. Journal of Building Materials, 2023, 26(3):324-331. (in Chinese)
    [9] 张丰, 莫立武, 邓敏. 碳化养护对钢渣混凝土强度和体积稳定性的影响[J]. 硅酸盐学报, 2016, 44(5):640-646.ZHANG Feng, MO Liwu, DENG Min. Effect of carbonization curing on mechanical strength and volume stability of steel slag concrete [J]. Journal of the Chinese Ceramic Society, 2016, 44(5):640-646. (in Chinese)
    [10] 曾海马, 刘志超, 王发洲. 碳化养护对大掺量钢渣砂浆的力学性能及显微结构的影响[J]. 硅酸盐学报, 2020, 48(11):1801-1807.ZENG Haima, LIU Zhichao, WANG Fazhou. Effect of carbonization curing on mechanical properties and microstructure of high volume steel slag mortar[J]. Journal of the Chinese Ceramic Society, 2020, 48(11):1801-1807. (in Chinese)
    [11] 冷勇, 余睿, 范定强, 等. 碳化再生粗骨料环保型超高性能混凝土的制备[J]. 建筑材料学报, 2022, 25(11):1185-1189,1218.LENG Yong, YU Rui, FAN Dingqiang, et al. Preparation of environmentally friendly UHPC containing carbonized recycled coarse aggregate[J]. Journal of Building Materials, 2022, 25(11):1185-1189,1218. (in Chinese)
    [12] 莫媛媛, 唐薇, 占宝剑, 等. 碳化再生微粉水泥基材料性能及其碳足迹评价[J]. 建筑材料学报,2023,26(11):1207-1213.MO Yuanyuan, TANG Wei, ZHAN Baojian, et al. Performance and carbon footprint evaluation of cement-based composites incorporating carbonated recycled fine powder[J]. Journal of Building Materials, 2023,26(11):1207-1213. (in Chinese)
    [13] 蒋正武, 高文斌, 杨巧, 等. 低碳混凝土技术理念与途径思考[J]. 建筑材料学报,2023,26(11):1143-1150.JIANG Zhengwu, GAO Wenbin, YANG Qiao, et al. Technical principles and approaches for low carbon concrete[J]. Journal of Building Materials, 2023,26(11):1143-1150. (in Chinese)
    [14] 刘松玉, 曹菁菁, 蔡光华, 等. 压实度对MgO碳化土加固效果的影响及其机理研究[J]. 中国公路学报, 2018, 31(8):30-38.LIU Songyu, CAO Jingjing, CAI Guanghua, et al. Study on the influence of compaction degree on the reinforcement effect of MgO carbonated soil and its mechanism[J]. China Journal of Highway and Transport, 2018, 31(8):30-38. (in Chinese)
    [15] 黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10):3300-3306,3316.HUANG Tao, FANG Xiangwei, ZHANG Wei, et al. Experimental study on active magnesium oxide-microbial solidified loess[J]. Rock and Soil Mechanics, 2020, 41(10):3300-3306,3316. (in Chinese)
    [16] YI Y L, LISKA M, UNLUER C, et al. Carbonating magnesia for soil stabilization[J]. Canadian Geotechnical Journal, 2013, 50:899-905.
    [17] 王东星, 何福金, 朱加业. CO2碳化矿渣-CaO-MgO加固土效能与机理探索[J]. 岩土工程学报, 2019, 41(12):2197-2206.WANG Dongxing, HE Fujin, ZHU Jiaye. Study on efficiency and mechanism of CO2 carbonized slag-CaO-MgO reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12):2197-2206. (in Chinese)
    [18] RAUSIS K, ĆWIK A, CASANOVA I. Phase evolution during accelerated CO2 mineralization of brucite under concentrated CO2 and simulated flue gas conditions[J]. Journal of CO2 Utilization, 2020, 37:122-133.
    [19] 王东星, 肖杰, 李丽华, 等. 基于碳化-固化技术的武汉东湖淤泥耐久性演变微观机制[J]. 岩土力学, 2019, 40(8):3045-3053.WANG Dongxing, XIAO Jie, LI Lihua, et al. Micro-mechanism of durability evolution of sludge dredged from East Lake, Wuhan based on carbonation-solidification technique[J]. Rock and Soil Mechanics, 2019, 40(8):3045-3053. (in Chinese)
    [20] XIAO J M, LI H, HU Y R. Structure, formation, properties, and application of calcium and magnesium silicate hydrates system-a review[J]. Journal of Wuhan University of Technology—Materials Science Edition, 2023, 38(3):604-615.
    [21] 孔祥辉, 崔帅, 胡文军, 等. 冻融作用下水泥稳定风化砂的劣化特征与机制[J]. 山东建筑大学学报, 2023, 38(1):80-87.KONG Xianghui, CUI Shuai, HU Wenjun, et al. Deterioration characteristics and mechanism of cement-stabilized weathered sand under freeze-thaw cycles[J]. Journal of Shandong Jianzhu University, 2023, 38(1):80-87. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孔祥辉,梁允鹏,崔帅,王潇康,张思峰.活性MgO碳化固化疏浚底泥的影响因素及作用机理[J].建筑材料学报,2024,27(7):620-628

复制
分享
文章指标
  • 点击次数:125
  • 下载次数: 4185
  • HTML阅读次数: 7
  • 引用次数: 0
历史
  • 收稿日期:2023-09-03
  • 最后修改日期:2024-02-03
  • 在线发布日期: 2024-08-09
文章二维码