氧化石墨烯改性纤维增强水泥基材料的拉伸性能
作者:
作者单位:

1.福州大学 土木工程学院,福建 福州 350116;2.福建省建筑设计研究院有限公司,福建 福州 350001

作者简介:

罗素蓉(1963—),女,福建尤溪人,福州大学教授,硕士生导师,学士 .E-mail:lsr@fzu.edu.cn

通讯作者:

罗素蓉(1963—),女,福建尤溪人,福州大学教授,硕士生导师,学士 .E-mail:lsr@fzu.edu.cn

中图分类号:

TU528.57

基金项目:

国家自然科学基金面上项目(52078139)


Tensile Properties of Fibers Reinforced Cementitious Materials Modified by Graphene Oxide
Author:
Affiliation:

1.College of Civil Engineering, Fuzhou University, Fuzhou 350116, China;2.Fujian Provincial Institute of Architectural Design and Research Corporation, Fuzhou 350001, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了提高聚乙烯醇(PVA)纤维增强水泥基材料的力学性能,将氧化石墨烯(GO)引入PVA纤维增强水泥基材料中,探究GO掺量在0%~0.05%范围内对材料单轴拉伸性能的影响.结果表明:掺入适量的GO能够有效提高材料的单轴拉伸性能,当GO掺量为0.01%时,28 d时材料的初裂拉伸强度、极限拉伸强度和极限拉伸应变均达到最大值,与未掺GO的对照组相比分别提高了26.97%、31.28%、23.25%;适量的GO可以优化孔隙结构,减少材料内部缺陷,促进水化产物的生成,使微观结构致密化,增强纤维和基体间的界面结合力,从而改善PVA纤维增强水泥基材料的宏观性能.

    Abstract:

    In order to improve the mechanical properties of cementitious materials reinforced with polyvinyl alcohol(PVA) fibers, graphene oxide(GO) was introduced into cementitious materials reinforced with PVA fibers, and the effects of GO dosage in the range of 0%-0.05% on the uniaxial tensile properties of the materials were investigated. The results show that the appropriate GO dosage can effectively improve the uniaxial tensile properties of the materials, and the initial crack tensile strength, ultimate tensile strength and ultimate tensile strain of the cementitious materials reaches the maximum value, increased by 26.97%, 31.28% and 23.25%, respectively compared with the control group without GO at the age of 28 d, when GO dosage is 0.01%. An appropriate GO dosage can optimize the pore structure, reduce internal defects in the material, facilitate the formation of hydration products, enhance the density of the material’s microstructure, and improve the interfacial bonding force between the fibers and the matrix, thus enhancing the macroscopic properties of the materials reinforced with PVA fibers.

    表 3 28 d时不同GO掺量下PVA纤维增强水泥基材料的孔隙率和孔径分布Table 3 Porosity and pore size distribution of PVA fiber reinforced cementitious materials with different GO dosages at 28 d
    表 2 PVA纤维的性能指标Table 2 Performance index of PVA fibers
    表 1 胶凝材料的主要化学组成Table 1 Main chemical compositions(by mass) of cementitious materials
    图1 GO的SEM图像Fig.1 SEM image of GO
    图2 GO的FTIR光谱Fig.2 FTIR spectrum of GO
    图3 GO的XPS图谱Fig.3 XPS spectra of GO
    图4 GO的XRD图谱Fig.4 XRD pattern of GO
    图5 单轴拉伸性能试验哑铃型试件Fig.5 Dumbbell type specimen for uniaxial tensile performance test (size:mm)
    图6 不同GO掺量下PVA纤维增强水泥基材料的力学性能Fig.6 Mechanical properties of PVA fiber reinforced cementitious materials with different GO dosages
    图7 28 d试件G0.01的抗压试验破坏形态和抗折试验多缝开裂图Fig.7 Compressive damage pattern and flexural multi-seam cracking diagram of specimen G0.01 at 28 d
    图8 不同GO掺量下PVA纤维增强水泥基材料28 d的应力-应变曲线Fig.8 Stress-strain curves of PVA fiber reinforced cementitious materials with different GO dosages at 28 d
    图9 28 d试件G0.01的拉伸损伤形态Fig.9 Tensile damage pattern of specimen G0.01 at 28 d
    图10 不同GO掺量下PVA纤维增强水泥基材料的单轴拉伸性能Fig.10 Uniaxial tensile properties of PVA fiber reinforced cementitious materials with different GO dosages
    图11 28 d时PVA纤维增强水泥基材料破坏断面处纤维的SEM图像Fig.11 SEM images of fibers at the section of PVA fiber reinforced cementitious materials at 28 d
    图12 28 d时不同GO掺量下PVA纤维增强水泥基材料的孔径分布曲线Fig.12 Pore size distribution curves of PVA fiber reinforced cementitious materials with different GO dosages at 28 d
    参考文献
    [1] JALAL M, MANSOURI E, SHARIFIPOUR M, et al. Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles[J]. Materials & Design, 2012, 34:389-400.
    [2] 牛恒茂, 武文红, 邢永明, 等. 纤维桥接裂缝过程与分布对水泥基材料弯曲性能影响[J]. 建筑材料学报, 2016, 19(2):352-358.NIU Hengmao, WU Wenhong, XING Yongming, et al. Effects of the process of polyvinyl alcohol(PVA) fiber bridging cracks and fiber distribution on the bending properties of cementitious composites[J]. Journal of Building Materials, 2016, 19(2):352-358. (in Chinese)
    [3] LI Q H, SUN C J, XU S L. Thermal and mechanical properties of ultrahigh toughness cementitious composite with hybrid PVA and steel fibers at elevated temperatures[J]. Composites Part B:Engineering, 2019, 176:107201.
    [4] HASKETT M, SADAKKATHULLA M M, OEHLERS D J, et al. Adelaide research and scholarship:Deflection of GFRP and PVA fibre reinforced concrete beams[C]//Proceedings of the 6th International Conference on FRP Composites in Civil Engineering(CICE2012). Rome:[s.n.], 2012:13-15.
    [5] LING Y F, WANG K J, LI W G, et al. Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites[J]. Composites Part B:Engineering, 2019, 164:747-757.
    [6] LI H D, XU S L, LEUNG C K Y. Tensile and flexural properties of ultra high toughness cemontious composite[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2009, 24 (4):677-683.
    [7] 李庆华, 徐松杰, 徐世烺,等. 采用碳纳米管提高纤维砂浆的起裂断裂韧度[J]. 建筑材料学报, 2017, 20(2):186-190.LI Qinghua, XU Songjie, XU Shilang, et al. Improvement of the initial fracture toughness of fiber mortar by carbon nanotubes[J]. Journal of Building Materlals, 2017, 20(2):186-190. (in Chinese)
    [8] LI H D, WEI J J, LONG W J. Quantifying the difference of uniformly dispersed and re-agglomerated graphene oxide-based cement pastes on rheological and mechanical properties[C]//3rd International Conference on Civil Engineering and Materials Science, ICCEMS 2018. Chengdu:MATEC Web of Conferences, 2018, 206:03003.
    [9] LÜ S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials, 2013, 49:121-127.
    [10] 吕生华, 张佳, 殷海荣, 等. 氧化石墨烯调控水化产物增强增韧水泥基复合材料的研究进展[J]. 陕西科技大学学报, 2019, 37(3):136-145.Shenghua LÜ, ZHANG Jia, YIN Hairong, et al. Research progress of graphene oxide reinforced and toughened cement-based composites[J]. Journal of Shaanxi University of Science and Technology, 2019, 37(3):136-145. (in Chinese)
    [11] 吕生华, 孙婷, 刘晶晶, 等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J]. 复合材料学报, 2014, 31(3):644-652.Shenghua LÜ, SUN Ting, LIU Jingjing, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3):644-652. (in Chinese)
    [12] WANG Q, WANG J, LU C X, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials, 2015, 30(4):349-356.
    [13] TONG T, FAN Z, LIU Q, et al. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro- properties of cementitious materials[J]. Construction and Building Materials, 2016, 106:102-114.
    [14] 李欣, 罗素蓉. 氧化石墨烯增强水泥复合材料的断裂性能[J]. 复合材料学报, 2021, 38(2):612-621.LI Xin, LUO Surong. Fracture properties of graphene oxide reinforced cement composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2):612- 621. (in Chinese)
    [15] LU Z Y, YAO J, LEUNG C K Y. Using graphene oxide to strengthen the bond between PE fiber and matrix to improve the strain hardening behavior of SHCC[J]. Cement and Concrete Research, 2019, 126:105899.
    [16] KANAKUBO T. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites[J]. Journal of Advanced Concrete Technology, 2006, 4(1):3-17.
    [17] 周健.碳纳米管对 ECC 力学性能及机敏性能影响的研究[D].济南:山东大学, 2018.ZHOU Jian. Mechanical behavior and self-sensing property of multi-walled carbon nanotubes reinforced engineered cementitious composites[D]. Jinan:Shangdong University, 2018. (in Chinese)
    [18] 牛旭婧,朋改非,何杰,等.多尺度钢纤维组合与碳纳米管对RPC力学性能影响[J].建筑材料学报, 2020,23(1):216-223.NIU Xujing, PENG Gaifei, HE Jie, et. al. Influence of multiscale steel fiber combination and carbon nanotube on mechanical properties of reactive powder concrete[J]. Journal of Building Materials, 2020,23(1):216-223. (in Chinese)
    [19] 何威,许吉航,焦志男.少层石墨烯对水泥净浆流动性能及力学性能的影响[J].复合材料学报, 2022,39(11):5637-5649.HE Wei, XU Jihang, JIAO Zhinan. Effect of few-layer graphene on the fluidity and mechanical properties of cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(11):5637-5649. (in Chinese)
    [20] KANDA T, LI V C. Effect of fiber strength and fiber-matrix interface on crack bridging in cement composites[J]. Journal of Engineering Mechanics, 1999, 125(3):290-299.
    [21] LONG W J, WEI J J, XING F, et al. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism[J]. Cement and Concrete Composites, 2018, 93:127-139.
    [22] 崔鑫有.氧化石墨烯对水泥粉煤灰体系的性能影响及作用机理研究[D].北京:北京建筑大学, 2018.CUI Xinyou. Effect of graphene oxide on properties and mechanism of cement fly ash system[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2018. (in Chinese)
    [23] FISCHER G, LI V C. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites(ECC)[J]. ACI Structural Journal, 2002, 99(1):104-111.
    [24] LU C, LU Z Y, LI Z J, et al. Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites[J]. Construction and Building Materials, 2016, 120:457-464.
    [25] JIANG W G, LI X G, LÜ Y, et al. Cement-based materials containing graphene oxide and polyvinyl alcohol fiber:Mechanical properties, durability, and microstructure[J]. Nanomaterials, 2018, 8(9):638.
    [26] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites, 2015, 58:140-147.
    [27] LI G Y, WANG P M, ZHAO X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005,43(6):1239-1245.
    [28] QURESHI T S, PANESAR D K. Impact of graphene oxide and highly reduced graphene oxide on cement based composites[J]. Construction and Building Materials, 2019, 206:71-83.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗素蓉,姚佳敏,周恩泉,王世杰.氧化石墨烯改性纤维增强水泥基材料的拉伸性能[J].建筑材料学报,2024,27(5):400-407

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-06
  • 最后修改日期:2023-10-19
  • 在线发布日期: 2024-06-11
文章二维码