湿筛混凝土循环拉伸和循环拉压力学特性
作者:
作者单位:

1.河海大学 土木与交通学院,江苏 南京 210024;2.中国安能集团第二工程局有限公司,江西 南昌 330095

作者简介:

吴 瑾 (1997—),女,江西萍乡人,河海大学硕士生.E-mail:jinwu0151@163.com

通讯作者:

陈徐东 (1985—),男,江苏如东人,河海大学教授,博士生导师,博士.E-mail:cxdong1985@163.com

中图分类号:

TV431

基金项目:

国家自然科学基金资助项目(51979090, 52379124);河海大学优秀研究生学位论文培育项目 (422003471)


Cyclic Tensile and Cyclic Tension Compression Properties of Wet-Screened Concrete
Author:
Affiliation:

1.College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China;2.China Anergy Second Engineering Bureau Co., Ltd., Nanchang 330095, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为探究湿筛混凝土在循环轴拉作用下的损伤过程和裂缝演变规律,基于声发射(AE)技术,对加载速率为1、10 μm/(m·s)的混凝土试件分别进行循环拉伸和循环拉压试验. 结果表明:随着循环次数的增加,试件的卸载和重加载刚度降低,塑性应变增大;当位移达到0.1 mm时,试件的载荷-位移曲线已接近软化阶段,此后裂缝发展速率降低,损伤变量减小;试件在循环加载过程中,随着位移的增加,AE累计振铃计数和累计撞击次数基本呈阶梯式增长.

    Abstract:

    To investigate the damage process and crack evolution of wet screened concrete under the action of cyclic tensile and cyclic tension compression, the cyclic tensile tests and cyclic tension compression tests of concrete specimens with loading rates of 1,10 μm/(m·s) were carried out by acoustic emission (AE). The results show that the speciments of the unloading and reloading stiffness decreases with the increase of the cycle times, and the plastic strain increases with the cyclic loading. When the displacement reaches 0.1 mm, the load displacement curve of the specimen is approaching the softening stage, and then the crack development speed decreases, and the damage index decreases. In the process of cyclic loading, with the increase of the displacement, the AE accumulative ring counts and the cumulative numbers of hit basically increase in a step pattern.

    表 1 湿筛混凝土配合比Table 1 Mix proportion of wet-screened concrete Unit:kg/m3
    图1 试件加载示意图Fig.1 Schematic diagram of specimen loading
    图2 试件在循环拉伸和循环拉压加载作用下的荷载-位移曲线Fig.2 Load-displacement curves of specimens under cyclic tensile and cyclic tension compression loading
    图3 试件的损伤变量计算示意图Fig.3 Schematic diagram of damage index calculation of specimen
    图4 不同加载速率下试件的循环拉伸和循环拉压损伤变量Fig.4 Cyclic tensile and cyclic tension compression damage indexes of specimens at different loading rates
    图5 循环拉伸加载作用下试件的AE累计振铃计数、累计撞击数与载荷-位移曲线Fig.5 AE accumulative ring counts, cumulative numbers of hit and load-displacement curves of specimens
    图6 循环拉压加载作用下试件的AE累计振铃计数、累计撞击数与载荷-位移曲线Fig.6 AE accumulative ring counts, cumulative numbers of hit and load-displacement curves of specimens during cyclic tension compression loading
    图7 循环拉伸加载作用下试件的AE累计振铃计数、累计撞击数与载荷-时间曲线Fig.7 AE accumulative ring counts, cumulative numbers of hit and load-time curves during cyclic tensile loading
    图8 循环拉压加载作用下AE累计振铃计数、累计撞击数与载荷-时间曲线Fig.8 AE accumulative ring counts, cumulative numbers of hit and load-time curves during cyclic tension compression loading
    图9 循环拉伸加载作用下试件的b值与载荷-时间曲线Fig.9 b-value and load-time curves of specimens during cyclic tensile loading
    图10 循环拉压加载作用下试件的b值与载荷-时间曲线Fig.10 b-value and load-time curves of specimens during cyclic tension compression loading
    图11 不同加载工况下AE数据定位Fig.11 AE data location under different loading conditions
    参考文献
    [1] 徐世烺, 周厚贵, 高洪波,等. 各种级配大坝混凝土双K断裂参数试验研究——兼对《水工混凝土断裂试验规程》制定的建议[J]. 土木工程学报, 2006,39(11):50-62.XU Shilang , ZHOU Hougui, GAO Hongbo , et al. An experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates[J]. China Civil Engineering Journal, 2006,39(11):50-62. (in Chinese)
    [2] 徐潇航, 胡张莉, 刘加平,等. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2):45-53.XU Xiaohang, HU Zhangli, LIU Jiaping, et al. Concrete strength prediction of the Three Gorges Dam based on machine learning regression model[J]. Materials Reports, 2023, 37(2):45-53. (in Chinese)
    [3] 张娇艳, 贡力, 贾治元,等. 基于改进物元可拓模型的水工混凝土耐久性影响因素分析[J].硅酸盐通报, 2022, 41(5):1617-1626.ZHANG Jiaoyan, GONG Li, JIA Zhiyuan, et al. Analysis on influencing factors of durability of hydraulic concrete based on improved matter-element extension model[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5):1617-1626. (in Chinese)
    [4] 徐慧颖, 卜静武, 吴新宇. 不同缝高比大坝混凝土断裂性能及声发射特性[J]. 水电能源科学, 2022, 40(3):100-104.XU Huiying, BU Jingwu, WU Xinyu. Fracture properties and acoustic emission characteristics of dam concrete with different seam height ratios[J]. Water Resources and Power, 2022, 40(3):100-104. (in Chinese)
    [5] 宋玉普, 段小亮, 施林林. 大骨料混凝土在动态三轴拉压压应力状态下的强度[J]. 建筑材料学报, 2015, 18(5):721-726.SONG Yupu, DUAN Xiaoliang, SHI Linlin. Strength of large aggregate concrete under dynamic triaxial compression-compression-tensile stress state[J]. Journal of Building Materials, 2015, 18(5):721-726. (in Chinese)
    [6] 宋玉普, 徐秀娟, 刘浩. 冻融循环后全级配混凝土及其湿筛混凝土的力学性能比较[J]. 水利学报, 2012, 43(1):69-75.SONG Yupu, XU Xiujuan, LIU Hao. Comparison of mechanical properties of fully graded concrete and its wet-screened concrete after freeze-thaw cycle[J]. Journal of Hydraulic Engineering, 2012, 43(1):69-75. (in Chinese)
    [7] 杲晓龙, 王俊颜, 郭君渊,等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11):3925-3938.GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile properties and constitutive relationship model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Composite Sinica, 2021, 38(11):3925-3938. (in Chinese)
    [8] WU S X, CHEN X D, ZHOU J K. Influence of strain rate and water content on mechanical behavior of dam concrete[J]. Construction and Building Materials, 2012, 36:448-457.
    [9] CARPINTERI A, XU J, LACIDOGNA G, et al. Reliable onset time determination and source location of acoustic emissions in concrete structures[J]. Cement and Concrete Composites, 2012, 34(4):529-537.
    [10] 何浩祥, 陈奎, 范少勇. 基于弹塑性耗能差率的地震损伤评估模型及分析方法[J]. 振动工程学报, 2018, 31(3):382-390.HE Haoxiang, CHEN Kui, FAN Shaoyong. Seismic damage assessment model and analysis method based on elastic-plastic dissipation differential rate[J]. Journal of Vibration Engineering, 2018, 31(3):382-390. (in Chinese)
    [11] 王岩, 王瑶, 路桂娟,等. 变幅循环荷载下混凝土轴拉声发射特性试验[J]. 河海大学学报(自然科学版), 2014, 42(1):45-49.WANG Yan, WANG Yao, LU Guijuan, et al. Experimental study on acoustic emission characteristics of concrete under variable amplitude cyclic tension loading[J]. Journal of Hohai University (Natural Science ), 2014, 42(1):45-49. (in Chinese)
    [12] GUO Y Z, CHEN X D, YANG H Q, et al. Experimental study on direct tension behavior of concrete through combined digital image correlation and acoustic emission techniques[J]. Structural Concrete, 2019, 20(6):2042-2055.
    [13] COLOMBO I S, MAIN I G, FORDE M C. Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals[J]. Journal of Materials in Civil Engineering, 2003, 15(3):280-286.
    [14] 段进涛, 仇培云, 刘建勇,等. 混凝土结构损伤声发射分析方法研究进展[J].科学技术与工程, 2023, 23(11):4487-4501.DUAN Jintao, QIU Peiyun, LIU Jianyong, et al. Progress of study on acoustic emission analysis methods for damage of concrete structures[J]. Science Technology and Engineering, 2023, 23(11):4487-4501. (in Chinese)
    相似文献
    引证文献
引用本文

吴瑾,陈徐东,甘元楠,张忠诚.湿筛混凝土循环拉伸和循环拉压力学特性[J].建筑材料学报,2024,27(5):432-438

复制
分享
文章指标
  • 点击次数:159
  • 下载次数: 870
  • HTML阅读次数: 17
  • 引用次数: 0
历史
  • 收稿日期:2023-07-05
  • 最后修改日期:2023-09-27
  • 在线发布日期: 2024-06-11
文章二维码