基于电沉积水热法的钢表面Mg-Al-NO3-LDH膜原位生长制备及沉积电位优化
作者:
作者单位:

深圳大学 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060

作者简介:

董必钦(1975—),男,浙江温州人,深圳大学教授,博士生导师,博士.E-mail:incise@szu.edu.cn

通讯作者:

洪舒贤(1982—),女,福建泉州人,深圳大学教授,博士生导师,博士.E-mail:sxhong@szu.edu.cn

中图分类号:

TU503

基金项目:

国家自然科学基金资助项目(52078298,52122907,51925805)


In Situ Growth and Deposition Potential Optimization of Mg-Al-NO3-LDH Film on Steel Surface Based on Electrodeposition Hydrothermal Method
Author:
Affiliation:

Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [19]
  • | | | |
  • 文章评论
    摘要:

    为提升建筑用钢的耐久性,通过电沉积法在钢表面形成层状双氢氧化物(LDH)晶核,再通过水热反应让LDH晶核生长成形成致密的Mg-Al-NO3-LDH膜,分析了电沉积电位对钢基底表面LDH膜生长的影响,讨论了LDH膜的形成机理.结果表明,当电沉积电位为-1.4 V(相对于Ag/AgCl电极)时,LDH纳米片聚集堆叠致密,形成的LDH膜结构最为密实,实现了对钢基底良好的锈蚀防护.

    Abstract:

    To improve the durability of construction steel, the layered double hydroxide(LDH)crystal nucleus was formed in the steel surface through electrical deposition method. The LDH continued to grow into a dense Mg-Al-NO3-LDH film through water heat reaction. The effect of the electric sediment voltage on the growth of the LDH film on the surface was analyzed and the mechanism of LDH membrane was discussed. The results show that when the electric precipitation voltage is -1.4 V, LDH nanoparticles are concentrated and stacked together and LDH thin film shape is the densest. A good anti-corrosion protection function on the base of steel is obtained.

    表 1 空白样品和样品MH4的极化曲线参数Table 1 Polarization curve parameters of blank sample and sample MH4
    图1 空白样品和不同电沉积电位钢片表面的SEM图像Fig.1 SEM images of blank sample and steel surfaces after electrodeposition at different potentials
    图2 空白样品和不同电沉积电位钢表面的XRD图谱和拉曼光谱Fig.2 XRD patterns and Raman spectra of blank sample and steel surfaces after electrodeposition at different potentials
    图3 不同电沉积电位-水热反应后钢表面的SEM图像Fig.3 SEM images of steel surfaces after electrodeposition-hydrothermal treatment at different potentials
    图4 不同电位电沉积-水热反应后钢表面的XRD图谱和FTIR图谱Fig.4 XRD patterns and FTIR spectra of steel surfaces after electrodeposition at different potentials
    图5 不同电沉积电位制备Mg-Al-NO3-LDH膜的Nyquist图和Bode图Fig.5 Nyquist and Bode plots for the preparation of Mg-Al-NO3-LDH films at different electrodeposition potentials
    图6 空白钢片和不同电沉积电位LDH样品在3.5%NaCl溶液中的动电位极化曲线Fig.6 Polarization curves of blank steel and LDH samples deposited at different potentials in 3.5% NaCl solution
    图7 在饱和Ca(OH)2 /3.5% NaCl混合溶液中的样品MH4和空白样品的Nyquist图和Bode图Fig.7 Nyquist and Bode plots of sample MH4 and blank sample immersed in saturated Ca(OH)2/3.5% NaCl mixed solution
    参考文献
    [1] LIU P F, ZHANG Y P, LIU S Q, et al. Fabrication of superhydrophobic marigold shape LDH films on stainless steel meshes via in-situ growth for enhanced anti-corrosion and high efficiency oil-water separation[J]. Applied Clay Science, 2019, 182:105292.
    [2] 贺鸿珠, 范立础, 史美伦. 海水对不同强度混凝土中钢筋锈蚀的影响[J]. 建筑材料学报, 2004, 7(3):291-294.HE Hongzhu, FAN Lichu, SHI Meilun. The effect of seawater on steel corrosion in concrete of different strength[J]. Journal of Building Materials, 2004, 7(3):291-294. (in Chinese)
    [3] WANG H C, FENG P, LÜ Y D, et al. A comparative study on UV degradation of organic coatings for concrete:Structure, adhesion, and protection performance[J]. Progress in Organic Coatings, 2020, 149:105892.
    [4] ZUO J D, LI H B, DONG B Q, et al. Mechanical properties and resistance to chloride ion permeability of epoxy emulsion cement mortar reinforced by glass flake[J]. Construction and Building Materials, 2017, 155:137-144.
    [5] CHEN J, SONG Y W, SHAN D Y, et al. Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid:The effects on morphology, composition and corrosion resistance [J]. Corrosion Science, 2013, 74:130-138.
    [6] 董必钦, 陈沛榆, 肖冰心, 等. 碱源对钢表面原位生长LDH抗腐蚀膜的影响[J]. 建筑材料学报, 2023, 26(3):259-265.DONG Biqin, CHEN Peiyu, XIAO Bingxin, et al. Effect of alkali source on in-situ growth of LDH corrosion resistant film on steel surface[J]. Journal of Building Materials, 2023, 26(3):259-265. (in Chinese)
    [7] HE Q Q, ZHOU M J, HU J M. Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys[J]. Electrochimica Acta, 2020, 355:136796.
    [8] YE X, JIANG Z M, LI L X, et al. In-situ growth of NiAl-layered double hydroxide on AZ31 Mg alloy towards enhanced corrosion protection[J]. Nanomaterials, 2018, 8(6):411.
    [9] 施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4):452-458.SHI Jinjie, SUN Wei, GENG Guoqing. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials, 2011, 14(4):452-458. (in Chinese)
    [10] HONG S X, QIN S F, LIU Z M, et al. Enhanced corrosion resistance and applicability of Mg/Al-CO32- layered double hydroxide film on Q235 steel substrate[J]. Construction and Building Materials, 2021, 276:122259.
    [11] 董必钦, 张成杰, 秦韶丰, 等. 金属离子浓度对Q235钢上Mg/Al-CO32- LDH防锈膜原位生长的影响[J]. 建筑材料学报, 2022, 25(9):917-923.DONG Biqin, ZHANG Chengjie, QIN Shaofeng, et al. Effect of metal ion concentration on in-situ growth of Mg/Al-CO32- LDH anti rust film on Q235 steel[J]. Journal of Building Materials, 2022, 25(9):917-923. (in Chinese)
    [12] TSUJIMURA A, UCHIDA M, OKUWAKI A. Synthesis and sulfate ion-exchange properties of a hydrotalcite-like compound intercalated by chloride ions[J]. Journal of Hazardous Materials, 2007, 143(1/2):582-586.
    [13] CHEN J, DONG J H, WANG J Q, et al. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution[J]. Corrosion Science, 2008, 50(12):3610-3614.
    [14] CHEN J, SONG Y W, SHAN D Y, et al. Study of the in situ growth mechanism of Mg-Al hydrotalcite conversion film on AZ31 magnesium alloy[J]. Corrosion Science, 2012, 63:148-158.
    [15] 朱凯, 唐大全, 黄亚东, 等. ZnMgAl-CO3-LDHs的沥青阻燃抑烟性能与机理分析[J]. 建筑材料学报, 2019, 22(4):599-605.ZHU Kai, TANG Daquan, HUANG Yadong, et al. Mechanism of flame and smoke retardancy of asphalt with ZnMgAl-CO3-LDHs[J]. Journal of Building Materials, 2019, 22(4):599-605. (in Chinese)
    [16] WANG X, JING C, CHEN Y X, et al. Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg-Al layered double hydroxide coating on AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys, 2020, 8(1):291-300.
    [17] SUI Y Q, LIU X H, BAI S F, et al. Phosphate loaded layered double hydroxides for active corrosion protection of carbon steel[J]. Corrosion Engineering, Science and Technology, 2022, 57(1/2):7-14.
    [18] WU B, ZUO J D, DONG B Q, et al. Study on the affinity sequence between inhibitor ions and chloride ions in Mg-Al layer double hydroxides and their effects on corrosion protection for carbon steel[J]. Applied Clay Science, 2019, 180:105181.
    [19] YANG Q R, PENG M, LIU W J, et al. Molecular-level insights into the corrosion protection mechanism of Mg/Al CO32--LDH films on steel in aqueous chloride environments[J]. Applied Clay Science, 2023, 245:107137.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董必钦,陈家濠,陈沛榆,刘文杰,洪舒贤.基于电沉积水热法的钢表面Mg-Al-NO3-LDH膜原位生长制备及沉积电位优化[J].建筑材料学报,2024,27(5):454-460

复制
分享
文章指标
  • 点击次数:131
  • 下载次数: 866
  • HTML阅读次数: 16
  • 引用次数: 0
历史
  • 收稿日期:2023-06-12
  • 最后修改日期:2023-09-25
  • 在线发布日期: 2024-06-11
文章二维码