高分子活性剂改良盐渍土力学特性及机理研究
作者:
作者单位:

1.河海大学 地球科学与工程学院,江苏 南京 211100;2.自然资源部国土(耕地)生态监测与修复工程技术创新中心 江苏省地质调查研究院,江苏 南京 210018

作者简介:

车文越(1992—),男,江苏镇江人,河海大学博士生.E-mail: chewy920728@163.com

通讯作者:

刘 瑾(1983—),女,福建漳州人,河海大学教授,博士生导师,博士.E-mail: jinliu920@163.com

中图分类号:

TU411

基金项目:

自然资源部国土(耕地)生态监测与修复工程技术创新中心开放课题(GTST2021-006)


Improvement of Mechanical Properties of Saline Soil by Polymer Active Agent and Its Mechanism
Author:
Affiliation:

1.School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China;2.Ministry of Natural Resources Geological Survey of Jiangsu Province, Technology Innovation Center for Ecological Monitoring & Restoration Project on Land(Arable), Nanjing 210018, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于三轴剪切试验与可溶盐含量测试,探究高分子活性剂掺量与养护时间对硫酸型盐渍土力学性能与可溶盐含量的影响,揭示土体微观特性及其改良机理.结果表明:CLI型高分子活性剂的掺入能有效提升硫酸型盐渍土的力学强度和抗变形能力,其最佳掺量为8%;活性剂与盐渍土发生置换反应,从而增强盐渍土的保水性能,有效降低盐渍土的可溶盐含量,CLI型高分子活性剂掺量越大,改良效果越好;养护时间达到7 d时,盐渍土的可溶盐含量趋于稳定.

    Abstract:

    The effects of polymer active agent content and curing time on the mechanical properties and salinity changes of sulfate saline soil were investigated by triaxial shear test and soluble salt content test. The microscopic characteristics and improvement mechanism of CLI polymer active agent surfactant were also investigated. The results show that the addition of CLI polymer active agent can effectively improve the mechanical strength and anti-deformation ability of sulfate saline soil, and its optimal dosage is 8%. The pores are filled by the displacement reactions between CLI polymer active agent and the saline soil, improving the water retention performance. It can also effectively reduce the soluble salt content in the saline soil. The higher the CLI polymer active agent content, the better the improvement. The soluble salt content tends to be stable after 7 days.

    表 2 CLI的基本物理参数Table 2 Basic physical parameters of CLI
    图1 不同围压条件下养护1 d时各试样偏应力-轴向应变曲线Fig.1 Deviatoric stress-axial strain curves of samples after curing for 1 day under various confining pressures
    图2 不同养护时间和CLI掺量下试样的内聚力和内摩擦角Fig.2 Cohesions and internal friction angles of samples with different curing times and CLI contents
    图3 不同干密度下改良盐渍土试样S8的内聚力与内摩擦角Fig.3 Cohesions and internal friction angles of sample S8 with different dry densities(7 d)
    图4 各试样的含水率与可溶盐含量Fig.4 Moisture content and soluble salt content of samples
    图5 试样S0和S8的XRD图谱Fig.5 XRD patterns of S0 and S8 samples(7 d)
    图6 试样S0和S8的EDS扫描分析Fig.6 EDS scanning analysis of S0 and S8 samples(7 d)
    图7 试样S0和S8的SEM照片Fig.7 SEM images of S0 and S8 samples(7 d)
    图8 硫酸型盐渍土与CLI反应原理示意图Fig.8 Schematic diagram of reaction between sulphuric acid saline soil and CLI
    图9 CLI掺量对盐渍土Zeta电位的影响Fig.9 Effect of different contents of CLI polymer active agent on the Zeta potential of saline soil(7 d)
    表 1 硫酸型盐渍土的基本物理参数Table 1 Basic physical parameters of sulfate saline soil
    表 3 不同养护时间及围压条件下各试样的峰值偏应力Table 3 Peak deviatoric stress of samples under different curing times and confining pressures
    参考文献
    [1] 汪林萍,杨全兵.NaCl-MgCl2复合除冰盐对混凝土盐冻破坏的影响及其作用机理[J].建筑材料学报, 2023, 26(2): 129-136,149.WANG Linping, YANG Quanbing. Effect and mechanism of NaCl-MgCl2 compounded deicing salt on the salt-frost scaling of concrete[J]. Journal of Building Materials, 2023, 26(2):129-136,149. (in Chinese)
    [2] 乔宏霞,杨振清,王鹏辉,等.利用Wiener过程探究镁水泥混凝土中涂层钢筋在盐类环境下的腐蚀寿命[J].建筑材料学报, 2021, 24(5):986-993.QIAO Hongxia, YANG Zhenqing, WANG Penghui, et al. Corrosion life investigation of coated steel bars in magnesium cement concrete under salt solution environment using Wiener process[J]. Journal of Building Materials, 2021, 24(5):986-993. (in Chinese)
    [3] ABSWNNOUE M A, DOUAOUI A, BARRENA J, et al. Geochemical characterization of the salinity of irrigated soils in arid regions(Biskra, SE Algeria)[J]. Acta Geochimica, 2021,40(2):234-250.
    [4] 郑毅,王爱国,刘开伟,等.不同地聚物砂浆抗硫酸盐侵蚀性能及其机理分析[J].建筑材料学报,2021,24(6):1224-1233.ZHENG Yi, WANG Aiguo, LIU Kaiwei, et al. Sulfate resistance and mechanism analysis of different geopolymer mortars[J]. Journal of Building Materials, 2021, 24(6):1224-1233. (in Chinese)
    [5] 赵庆新,才鸿伟,安赛,等.水泥磨细矿渣固化滨海盐渍土强度及机理[J].建筑材料学报,2020,23(3):625-630.ZHAO Qingxin, CAI Hongwei, AN Sai, et al. Strength and mechanism of stabilized coastal saline soil by cement and fine slag[J]. Journal of Building Materials, 2020, 23(3):625-630. (in Chinese)
    [6] 张鹏,庄智杰,鲍玖文,等.人工模拟海洋潮汐区应变硬化水泥基复合材料抗氯盐侵蚀性能[J].建筑材料学报, 2021, 24(1):1-6,21.ZHANG Peng, ZHUANG Zhijie, BAO Jiuwen, et al. Chloride resistance of strain hardening cementitious composites under the artificially simulated marine tidal zone[J]. Journal of Building Materials, 2021, 24(1):1-6,21. (in Chinese)
    [7] 张佳兴,裴向军,韦璐.硫酸盐渍土水泥加固盐胀抑制剂研究[J].岩土工程学报, 2018, 40(1):155-161.ZHANG Jiaxing, PEI Xiangjun, WEI Lu. Salt expansion inhibitors for sulphated salty soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1):155-161. (in Chinese)
    [8] 廖晓兰,杨久俊,张磊,等.丙烯酰胺聚合固化盐渍土试验研究[J].岩土力学, 2015,36(8):2216-2222.LIAO Xiaolan, YANG Jiujun, ZHANG Lei, et al. An experimental study of acrylamide polymerized solidification of saline soil[J]. Rock and Soil Mechanics, 2015, 36(8):2216-2222. (in Chinese)
    [9] 柴寿喜,王沛,韩文峰,等.高分子材料固化滨海盐渍土的强度与微结构研究[J].岩土力学, 2007(6):1067-1072.CHAI Shouxi, WANG Pei, HAN Wenfeng, et al. Research on strength and microstructure feature of solidified saline soil in inshore with polymer[J]. Rock and Soil Mechanics, 2007(6):1067-1072. (in Chinese)
    [10] 黄婷,李媛,甘泉峰,等.生物基复合改良剂对滨海盐渍土综合地力的提升作用[J]水土保持通报, 2022, 42(4):99-106.HUANG Ting, LI Yuan, GAN Quanfeng, et al. Effects of bio-based compound amendments on overall soil fertility of coastal saline soil[J]. Bulletin of Soil and Water Conservation, 2022, 42(4):99-106. (in Chinese)
    [11] 孙好芬,巫崇婷,黄振,等.土壤中硫酸根离子的测定[J].广州化工, 2018, 46(9):83-85.SUN Haofen, WU Chongting, HUANG Zhen, et al. Determination of trace sulfate ion in soil[J]. Guangzhou Chemical Industry, 2018, 46(9):83-85. (in Chinese)
    [12] 杨西锋,尤哲敏,牛富俊,等. 固化剂对盐渍土物理力学性质的固化效果研究进展[J].冰川冻土, 2014, 36(2):376-385.YANG Xifeng, YOU Zhemin, NIU Fujun, et al. Research progress in stabilizers and their effects in improving physical and mechanical properties of saline soil[J]. Journal of Glaciology and Geocryology, 2014, 36(2):376-385. (in Chinese)
    [13] PEI X J, ZHANG F Y, WU W J, et al. Physicochemical and index properties of loess stabilized with lime and fly ash piles[J]. Applied Clay Science, 2015,114:77-84.
    [14] 柳艳华,张宏,齐文廷.石灰改良滨海氯盐渍土的室内试验研究[J].建筑材料学报,2011, 14(2):217-221.LIU Yanhua, ZHANG Hong, QI Wenting. Treatment of coastal chloride saline soil by lime addition[J]. Journal of Building Materials, 2011, 14(2):217-221. (in Chinese)
    [15] 吴军虎,李玉晨,邵凡凡,等.生化黄腐酸对土壤物理性质及水分运动特性的影响[J].水土保持学报,2021,35(4):159-164,171.WU Junhu, LI Yuchen, SHAO Fanfan, et al. Effects of biochemical fulvic acid on physical properties and water movement characteristics[J]. Journal of Soil and Water Conservation, 2021,35(4):159-164,171. (in Chinese)
    [16] 宋孝帅,李强,夏红霞,等.可溶性有机质对三峡库区土壤胶体颗粒凝聚的影响[J].生态与农村环境学报,2023,39(3):378-385.SONG Xiaoshuai, LI Qiang, XIA Hongxia, et al. Effect of dissolved organic matter on aggregation of soil colloidal particles in the three gorges reservoir area[J]. Journal of Ecology and Rural Environment, 2023, 39(3):378-385. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

车文越,刘瑾,郝社锋,卜凡,任静华.高分子活性剂改良盐渍土力学特性及机理研究[J].建筑材料学报,2024,27(5):446-453

复制
分享
文章指标
  • 点击次数:183
  • 下载次数: 873
  • HTML阅读次数: 35
  • 引用次数: 0
历史
  • 收稿日期:2023-06-10
  • 最后修改日期:2023-09-26
  • 在线发布日期: 2024-06-11
文章二维码