钢筋非均匀锈蚀与混凝土开裂试验及数值模拟
作者:
作者单位:

青岛理工大学 土木工程学院,山东 青岛 266520

作者简介:

孙 佳(1995—),女,山东威海人,青岛理工大学博士生.E-mail:sunjiaqut@outlook.com

通讯作者:

金祖权(1977—),男,四川南充人,青岛理工大学教授,博士生导师,博士.E-mail:jinzuquan@126.com

中图分类号:

TU528.572

基金项目:

国家杰出青年科学基金资助项目(52225905)


Experimental and Numerical Simulation on Non-uniform Corrosion of Steel Bar and Concrete Cracking
Author:
Affiliation:

School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用恒电位驱动氯离子渗透并加速钢筋锈蚀来模拟海洋钢筋混凝土锈蚀,研究了水胶比、保护层厚度和钢筋直径对试件锈胀开裂的影响; 利用COMSOL Multiphysics软件建立了真实骨料混凝土模型并进行数值模拟. 结果表明:本试验制备的混凝土试件在恒电位加速锈蚀下钢筋发生非均匀锈蚀并导致混凝土产生3条主裂缝,钢筋临界锈胀应力为2.85~3.51 MPa,开裂时间为190~311 h,降低水胶比及增大保护层厚度均可延缓锈胀开裂时间; 数值模拟可以很好地再现钢筋混凝土非均匀锈蚀过程,其获得的锈胀应力演变及混凝土开裂模式与试验结果吻合.

    Abstract:

    To simulate the corrosion of reinforced concrete, chloride penetration was drove under constant potential. The effects of water to cement ratio, cover thickness, and steel bar diameter on the rust expansion cracking of specimens were studied. Additionally, the concrete model of real aggregate was established to simulate using COMSOL Multiphysics software. The results show that non-uniform corrosion of steel bar occurs and leads to three main cracks in concrete under constant potential accelerated corrosion. The rust expansion stress of concrete specimen is 2.85-3.51 MPa and the cracking time is 190-311 h in this experiment. Moreover, the cracking time of specimens can be delayed by reduction of the water to cement ratio and increase of the cover thickness. The numerical simulation can well reproduce the non-uniform corrosion process of reinforced concrete, and the evolution of rust expansion stress and crack development is consistent with the test results.

    表 3 不同钢筋混凝土材料参数下钢筋非均匀锈蚀的临界锈胀应力和开裂时间Table 3 Critical rust expansion stress and cracking time of non-uniform corrosion under different reinforced concrete material parameters
    表 1 混凝土的配合比及抗压强度Table 1 Mix proportions and compressive strength of concretes
    表 2 不同类型钢筋混凝土的极化电阻Table 2 Polarization resistance under different reinforced concrete types
    图1 应变片的粘贴位置Fig.1 Position of strain gauge
    图2 钢筋混凝土通电加速锈蚀试验示意图Fig.2 Schematic diagram of electrochemical accelerated corrosion device for reinforced concrete
    图3 电化学测试示意图Fig.3 Schematic diagram of electrochemical test
    图4 试件裂缝观测图Fig.4 Crack observation diagram of specimen
    图5 钢筋混凝土试件裂缝及锈蚀形貌图Fig.5 Crack and corrosion development of reinforcement concrete specimen
    图6 钢筋混凝土试件局部观测图Fig.6 Local observation view of reinforcement concrete specimen
    图7 钢筋混凝土中钢筋的电化学阻抗谱Fig.7 Electrochemical impedance spectra of steel bar in reinforced concrete
    图8 不同类型钢筋混凝土拟合的锈蚀电流密度演化方程Fig.8 Fitting regression equation of corrosion current density of different types of reinforced concretes
    图10 不同水胶比混凝土试件中钢筋锈胀应力变化Fig.10 Evolution of rust expansion stress of concrete specimens with different water to cement ratios(D=16 mm, C=15 mm)
    图9 混凝土试件6(mW/mB=0.32,D=16 mm,C=15 mm)中钢筋锈胀应变及应力变化Fig.9 Evolution of rust expansion strain and stress of concrete specimen 6(mW/mB =0.32, D=16 mm, C=15 mm)
    图11 不同保护层厚度混凝土试件中钢筋锈胀应力变化Fig.11 Evolution of rust expansion stress of concrete specimens with different cover thicknesses(mW/mB =0.36, D=16 mm)
    图12 不同钢筋直径混凝土试件中钢筋锈胀应力变化Fig.12 Evolution of rust expansion stress in concrete specimens with different steel rebar diameters(mW/mB =0.36, C=15 mm)
    图13 真实骨料混凝土建模步骤Fig.13 Modeling process of real aggregate concrete
    图14 钢筋半椭圆锈蚀模型Fig.14 Model of semi-elliptical corrosion of rebar
    图15 钢筋混凝土试件开裂过程模拟图Fig.15 Simulated diagram of cracking process for reinforced concrete specimen
    图16 试验与模拟的锈胀应力对比Fig.16 Rust expansion stress of test and simulation
    图17 试验与模拟锈胀裂缝扩展情况Fig.17 Schematic diagram of crack of test and simulation
    参考文献
    [1] 钟小平, 戴仁礼, 袁承斌, 等. 氯盐环境下钢筋锈蚀损伤混凝土应力-应变本构模型[J]. 建筑材料学报, 2021, 24(4):788-793.ZHONG Xiaoping, DAI Renli, YUAN Chengbin, et al. Stress-strain constitutive model of concrete damaged by rebar corrosion in chloride environment[J]. Journal of Building Materials, 2021, 24(4):788-793. (in Chinese)
    [2] OTIENO M, BEUSHAUSEN H, ALEXANDER M. Chloride-induced corrosion of steel in cracked concrete-Part I:Experimental studies under accelerated and natural marine environments[J]. Cement and Concrete Research, 2016, 79:373-385.
    [3] 赵铁军, 毕忠华, 张鹏, 等. 氯盐环境下混凝土中钢筋锈蚀的梯形电极监测[J]. 建筑材料学报, 2014, 17(6):989-993.ZHAO Tiejun, BI Zhonghua, ZHANG Peng, et al. Ladder-shaped-electrode monitoring for corrosion of steel bar in concrete under chloride environment[J]. Journal of Building Materials, 2014, 17(6):989-993. (in Chinese)
    [4] 金南国, 何家豪, 付传清, 等. 钢筋加速非均匀锈蚀试验方法和锈蚀形态研究[J]. 浙江大学学报 (工学版), 2020, 54(3):483-490.JIN Nanguo, HE Jiahao, FU Chuanqing, et al. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(3):483-490. (in Chinese)
    [5] 王坤, 赵羽习, 夏晋.混凝土结构锈裂形态试验研究及数值模拟[J].建筑结构学报, 2019, 40(7):138-145.WANG Kun, ZHAO Yuxi, XIA Jin. Experimental study and numerical simulation of corrosion-induced crack patterns of concrete structures[J]. Journal of Building Structures, 2019, 40(7):138-145. (in Chinese)
    [6] 尚明刚, 张云升, 何忠茂, 等. 盐渍土环境下钢筋混凝土恒电流加速锈蚀试验及可靠性分析[J]. 建筑材料学报, 2022, 25(7):751-759.SHANG Minggang, ZHANG Yunsheng, HE Zhongmao, et al. Constant current accelerated corrosion test and reliability analysis of reinforced concrete in saline soil environment[J]. Journal of Building Materials, 2022, 25(7):751-759. (in Chinese)
    [7] BAZANT Z P. Physical model for steel corrosion in concrete sea structures—Theory[J]. Journal of the Structural Division, 1979, 105(6):1137-1153.
    [8] YUAN Y S, JI Y S. Modeling corroded section configuration of steel bar in concrete structure[J]. Construction and Building Materials, 2009, 23(6):2461-2466.
    [9] YANG S T, XI X, LI K F, et al. Numerical modeling of nonuniform corrosion-induced concrete crack width[J]. Journal of Structural Engineering, 2018, 144(8):04018120.
    [10] ZHAO Y X, ZHANG X W, DING H J, et al. Non-uniform distribution of a corrosion layer at a steel/concrete interface described by a Gaussian model[J]. Corrosion Science, 2016, 112:1-12.
    [11] DU X L, JIN L, ZHANG R B. Modeling the cracking of cover concrete due to non-uniform corrosion of reinforcement[J]. Corrosion Science, 2014, 89:189-202.
    [12] 金浏, 张仁波, 杜修力, 等. 角部钢筋锈蚀引发混凝土保护层开裂行为研究[J]. 建筑材料学报, 2016, 19(2):255-261.JIN Liu, ZHANG Renbo, DU Xiuli, et al. Investigation on cracking behavior of concrete cover induced by corner located rebar corrosion[J]. Journal of Building Materials, 2016, 19(2):255-261. (in Chinese)
    [13] 李永珑, 张志强, 林迪睿, 等. 钢筋锈胀对混凝土构件保护层开裂影响的分析[J]. 铁道工程学报,2022,39(5):73-79.LI Yonglong, ZHANG Zhiqiang, LIN Dirui, et al. Analysis of the influence of reinforcement corrosion expansion on cracking of concrete cover[J]. Journal of Railway Engineering Society, 2022, 39(5):73-79. (in Chinese)
    [14] ZHAO J M, CHEN Z G, MEHRMASHHADI J, et al. A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete[J]. Engineering Fracture Mechanics, 2020, 229:106969.
    [15] GRASSL P, DAVIES T. Lattice modelling of corrosion induced cracking and bond in reinforced concrete[J]. Cement and Concrete Composites, 2011, 33(9):918-924.
    [16] GUZMÁN S, GÁLVEZ J C. Modelling of concrete cover cracking due to non-uniform corrosion of reinforcing steel[J]. Construction and Building Materials, 2017, 155:1063-1071.
    [17] XI X, YANG S T, LI C Q. A non-uniform corrosion model and meso-scale fracture modelling of concrete[J]. Cement and Concrete Research, 2018, 108:87-102.
    [18] ZHAO Y X, KARIMI A R, WONG H S, et al. Comparison of uniform and non-uniform corrosion induced damage in reinforced concrete based on a Gaussian description of the corrosion layer[J]. Corrosion Science, 2011, 53(9):2803-2814.
    [19] 冯兴国, 范琦琦, 杨洋, 等. 交变温度对细骨料珊瑚混凝土中钢筋耐腐蚀性能的影响[J]. 建筑材料学报, 2022, 25(5):525-531.FENG Xingguo, FAN Qiqi, YANG Yang, et al. Effect of alternating temperature on corrosion resistance of reinforcements in fine coral aggregate concrete[J]. Journal of Building Materials, 2022, 25(5):525-531. (in Chinese)
    [20] ZUO X B, LI X N, LIU Z Y, et al. Electrochemical and microstructural study on depassivation of ductile iron surface in chloride-contained simulated cement-mortar pore solution[J]. Construction and Building Materials, 2019, 229:116907.
    [21] CHEN F X, JIN Z Q, WANG E D, et al. Relationship model between surface strain of concrete and expansion force of reinforcement rust[J]. Scientific Reports, 2021, 11(1):4208.
    [22] 李宁, 金祖权, 于泳, 等. 混凝土真实细观模型的生成及氯离子传输的数值模拟[J]. 土木与环境工程学报 (中英文), 2019, 41(6):71-79.LI Ning, JIN Zuquan, YU Yong, et al. Generation of real mesoscopic model of concrete and numerical simulation of chloride ions transportation[J]. Journal of Civil and Environmental Engineering, 2019, 41(6):71-79. (in Chinese)
    [23] BHARGAVA K, GHOSH A K, MORI Y, et al. Modeling of time to corrosion-induced cover cracking in reinforced concrete structures[J]. Cement and Concrete Research, 2005, 35(11):2203-2218.
    [24] 李亚辉, 郑山锁, 董立国, 等.非均匀锈蚀钢筋拉伸性能试验与模拟[J]. 建筑材料学报, 2022, 25(9):991-998.LI Yahui, ZHENG Shansuo, DONG Liguo, et al. Tensile properties test and simulation of non-uniform corroded reinforcement[J]. Journal of Building Materials, 2022, 25(9):991-998. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙佳,金祖权,秦一琦.钢筋非均匀锈蚀与混凝土开裂试验及数值模拟[J].建筑材料学报,2024,27(4):309-319

复制
分享
文章指标
  • 点击次数:252
  • 下载次数: 464
  • HTML阅读次数: 17
  • 引用次数: 0
历史
  • 收稿日期:2023-05-31
  • 最后修改日期:2023-08-21
  • 在线发布日期: 2024-05-11
文章二维码