硅灰对硫铝酸盐水泥力学和电磁传输性能的影响
作者:
作者单位:

北京工业大学 城市建设学部,北京 100124

作者简介:

李 悦(1972—),男,河北唐山人,北京工业大学教授,博士生导师,博士.E-mail:liyue@bjut.cn

通讯作者:

李 悦(1972—),男,河北唐山人,北京工业大学教授,博士生导师,博士.E-mail:liyue@bjut.cn

中图分类号:

TU525

基金项目:

国家自然科学基金资助项目(52078015)


Effect of Silica Fume on Mechanical Properties and Electromagnetic Transmission Properties of Sulphoaluminate Cement
Author:
Affiliation:

Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology,Beijing 100124, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    研究了硅灰掺量对硫铝酸盐水泥力学性能和电磁传输性能的影响.结果表明:随着硅灰掺量的增加,硫铝酸盐水泥的抗压强度和抗折强度均先增大后降低,硅灰的最优掺量为10%;硫铝酸盐水泥的电磁传输性能随着硅灰掺量的增加而增大,与未掺硅灰的样品相比,硅灰-硫铝酸盐水泥在3.94~5.99 GHz频段范围内电磁传输性能均有所提升,电磁透射率峰值最高提升了23.9%.

    Abstract:

    The effects of silica fume contents on the mechanical properties and electromagnetic transmission properties of sulphoaluminate cement were studied. The results show that with the increase of silica fume content, the compressive strength and flexural strength of sulphoaluminate cement increase first and then decrease, and the optimal content of silica fume is 10%. The electromagnetic transmission performance of sulphoaluminate cement increases with the increase of silica fume content. Compared with the sample without silica fume, the electromagnetic transmission property of silica fume-sulphoaluminate cement is improved in the range of 3.94-5.99 GHz. The peak value of electromagnetic transmittance is increased by 23.9% at most.

    表 1 SAC和SF的化学组成Table 1 Chemical compositions(by mass) of SAC and SF
    图1 SF的粒径分布Fig.1 Particle size distribution of SF
    图2 SF-SAC的凝结时间和流动度Fig.2 Setting time and fluidity of SF-SAC
    图3 SF-SAC的抗压强度和抗折强度Fig.3 Compressive strength and flexural strength of SF-SAC
    图4 SF-SAC的电阻率Fig.4 Resistivity of SF-SAC
    图5 石蜡-粉末复合材料的介电参数Fig.5 Dielectric parameters of P-powder composite materials
    图6 SF-SAC的介电参数Fig.6 Dielectric parameters of SF-SAC
    图7 SF-SAC的电磁波反射率、透射率和吸收率Fig.7 Electromagnetic wave reflectivity, transmittance and absorption of SF-SAC
    图8 SF-SAC水化产物的XRD图谱Fig.8 XRD patterns of SF-SAC hydration products
    图9 SF-SAC的孔结构Fig.9 Pore structure of SF-SAC
    图10 SF-SAC的SEM照片Fig.10 SEM images of SF-SAC
    表 2 SAC的物理性能Table 2 Physical properties of SAC
    参考文献
    [1] LIU J L, LI Y, JIN C Y, et al. Multi-scale quantitative study on dielectric properties of C-S-H synthesized by different molar ratio of Ca/Si[J]. Construction and Building Materials, 2022, 360:129599.
    [2] DINH T T, HEGLER S, LIEBSCHER H, et al. Dielectric material characterization of concrete in GHz range in dependence on pore volume and water content[J]. Construction and Building Materials, 2021, 311:125234.
    [3] SUN J B, LIN S, ZHANG G B, et al. The effect of graphite and slag on electrical and mechanical properties of electrically conductive cementitious composites[J]. Construction and Building Materials, 2021, 281:122606.
    [4] 元强, 谢宗霖, 姚灏, 等. 高掺量丁苯乳液改性硫铝酸盐水泥的早期性能[J]. 建筑材料学报, 2023, 26(9):1023-1030.YUAN Qiang, XIE Zonglin, YAO Hao, et al. Early performance of high use level styrene-butadiene rubber latex modified sulphoaluminate cement[J]. Journal of Building Materials, 2023, 26(9):1023-1030.(in Chinese)
    [5] 程娅萍. 硫铝酸盐水泥基材料的透波性能研究[D]. 北京:北京工业大学, 2022.CHENG Yaping. Study on wave transmission properties of sulphoaluminate cement-based materials[D]. Beijing:Beijing University of Technology, 2022.(in Chinese)
    [6] 刘顺华, 刘军民. 电磁波屏蔽及吸波材料[M]. 北京:化学工业出版社, 2013:110-120.LIU Shunhua, LIU Junmin. Electromagnetic wave shielding and absorbing materials[M]. Beijing:Chemical Industry Press, 2013:110-120. (in Chinese)
    [7] 张国栋. 基于阻抗匹配原理的水泥基吸波材料制备及性能研究[D]. 济南:济南大学, 2016.ZHANG Guodong. Preparation and properties of cement-based absorbing materials based on impedance matching principle[D]. Jinan:University of Jinan, 2016. (in Chinese)
    [8] 田焜, 丁庆军, 胡曙光. 新型水泥基吸波材料的研究[J]. 建筑材料学报, 2010, 13(3):295-299.TIAN Kun, DING Qingjun, HU Shuguang. Study of new cementitious microwave absorbing materials[J]. Journal of Building Materials, 2010, 13(3):295-299. (in Chinese)
    [9] 曾晓辉, 凌晨博, 潘璋, 等. 毛细吸水作用对水泥砂浆电阻率的影响研究[J]. 建筑材料学报, 2018, 21(5):714-719.ZENG Xiaohui, LING Chenbo, PAN Zhang, et al. Influence of capillary water absorption on resistivity of cement mortar[J]. Journal of Building Materials, 2018, 21(5):714-719. (in Chinese)
    [10] 饶美娟, 王群超, 杨旺, 等. 高温蒸养与偏高岭土对高铁相水泥性能的影响[J]. 建筑材料学报, 2023, 26(4):339-345, 377.RAO Meijuan, WANG Qunchao, YANG Wang, et al. Effects of high temperature steam curing and metakaolin on properties of high ferrite cement[J]. Journal of Building Materials, 2023, 26(4):339-345, 377.(in Chinese)
    [11] 孙振平, 耿瑶, 杨海静, 等. 硫酸复盐改善混凝土早期抗拉强度的机理分析[J]. 建筑材料学报, 2022, 25(10):999-1006.SUN Zhenping, GENG Yao, YANG Haijing, et al. Mechanism analysis of a sulfate complex salt improving early tensile strength of concrete[J]. Journal of Building Materials, 2022, 25(10):999-1006.(in Chinese)
    [12] 廖国胜, 徐路, 廖宜顺. 硅灰对硫铝酸盐水泥水化行为的影响机理[J]. 建筑材料学报, 2017, 20(6):840-845.LIAO Guosheng, XU Lu, LIAO Yishun. Influence of silica fume on the hydration behavior of calcium sulphoaluminate cement[J]. Journal of Building Materials, 2017, 20(6):840-845.(in Chinese)
    [13] 马保国, 韩磊, 李海南,等. 掺合料对硫铝酸盐水泥性能的影响[J]. 新型建筑材料, 2014, 41(9):19-21, 50.MA Baoguo, HAN Lei, LI Hainan, et al. Impact of mineral admixture on the performance of sulphate aluminum cement[J]. New Building Materials,2014, 41(9):19-21, 50.(in Chinese)
    [14] YANG B, LI Y, LIU J L, et al. Influence of quartz fiber on electromagnetic wave transmission properties of high-alumina cement paste[J]. Frontiers in Materials, 2022, 9:893927.
    [15] SHEN Y N, LI Q H, XU S L, et al. Electromagnetic wave absorption of multifunctional cementitious composites incorporating polyvinyl alcohol (PVA) fibers and fly ash:Effects of microstructure and hydration[J]. Cement and Concrete Research, 2021, 143:106389.
    [16] HE Z, YANG H M, LIU M Y. Hydration mechanism of sulphoaluminate cement[J]. Journal of Wuhan University of Technology(Materials Science), 2014, 29(1):70-74.
    引证文献
引用本文

李悦,华成,刘江林.硅灰对硫铝酸盐水泥力学和电磁传输性能的影响[J].建筑材料学报,2024,27(4):283-290

复制
分享
文章指标
  • 点击次数:245
  • 下载次数: 448
  • HTML阅读次数: 34
  • 引用次数: 0
历史
  • 收稿日期:2023-05-20
  • 最后修改日期:2023-08-09
  • 在线发布日期: 2024-05-11
文章二维码