水泥窑协同处置MSW环境负荷与性能耦合评价
作者:
作者单位:

1.同济大学 先进土木工程材料教育部重点实验室,上海 201804;2.同济大学 材料科学与工程学院,上海 201804;3.华润水泥技术研发有限公司,广东 广州 510460;4.华润水泥技术研发(广西)有限公司, 广西 南宁 530409

作者简介:

李寅雪(1998—),女,山西运城人,同济大学硕士生.E-mail:liyinxue981121@163.com

通讯作者:

郭晓潞(1980—),女,山西长治人,同济大学教授,博士生导师,博士.E-mail:guoxiaolu@tongji.edu.cn

中图分类号:

TU525.9

基金项目:

“十四五”国家重点研发计划项目(2021YFB3802001);国家自然科学基金资助项目(52178241,52242807);中央高校基本科研业务费专项资金资助项目(22120220599,2023-2-YB-20)


Coupling Evaluation of Environmental Load and Mechanical Properties for Co-processing of MSW in Cement Kiln
Author:
Affiliation:

1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China;2.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;3.China Resources Cement Technology R&D Co., Ltd., Guangzhou 510460, China;4.China Resources Cement Technology R&D (Guangxi) Co., Ltd., Nanning 530409, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于中国某水泥厂2022~2023年生产数据及近3年国家/行业统计数据进行生命周期评价,核算水泥窑协同处置城市生活垃圾(MSW)生产不同品种水泥的环境负荷;联合数据质量指标评估和蒙特卡洛模拟来综合评估最终结果的不确定度.与常规工艺相比,水泥窑协同处置工艺生产每吨熟料的综合环境负荷降幅为7.82%;4种水泥中,P·O 52.5水泥的综合环境负荷最大,但其单位强度的环境负荷相对较小.综合考虑,采用水泥窑协同处置工艺生产P·C 42.5水泥与采用常规工艺生产P·O 42.5水泥相比,其综合环境负荷降幅为16.87%.

    Abstract:

    Based on the production data from 2022 to 2023 in a typical plant in China and national and industrial statistics from the past three years, a life cycle assessment(LCA) was conducted for cement production. The environmental load of co-processing of municipal solid waste(MSW) in cement kiln was calculated, and the differences in environmental load per unit strength of different cements were compared. Moreover, the uncertainty of the LCA result was evaluated by data quality indicator and Monte Carlo simulation. Compared with conventional production, the integrated environmental load indicator of one ton of clinker was reduced by 7.82% in the co-processing production. Among the four types of cement, Portland cement P·O 52.5 had the highest integrated environmental load indicator, but its environmental load per unit strength was relatively smaller. Compared with the production of Portland cement P·O 42.5 by conventional clinker production, the integrated environmental load indicator of the production of Portland cement P·C 42.5 by co-processing production was reduced by 16.87%.

    表 6 水泥各生产阶段环境负荷及综合环境负荷的不确定度Table 6 Uncertainty of environmental load and intergrated environmental load indicator of Portland cement
    表 5 水泥生产涉及的环境影响类型、归一化基准值及权重系数Table 5 Environmental impact categories, reference values and weight coefficients involved in cement production
    表 3 不同品种水泥3、28 d的抗压、抗折强度Table 3 Compressive strength and flexural strength of different cements at 3, 28 d
    表 1 水泥生产碳核算涉及的参数取值Table 1 Parameters involved in carbon accounting for cement production
    表 4 单位水泥生产生命周期清单Table 4 Life cycle inventory of 1 t cement production
    图1 水泥窑协同处置城市生活垃圾的系统边界Fig.1 System boundaries of municipal solid waste co-processing in cement kiln
    图2 不确定度分析流程Fig.2 Process framework of the uncertainty analysis
    图3 熟料各生产阶段对环境影响类型的贡献Fig.3 Contribution of the clinker production stages on environmental impact categories
    图4 常规工艺与协同处置工艺生产熟料环境负荷的对比Fig.4 Comparison of environmental load of clinker by conventional and co-processing production,
    图5 不同品种水泥的环境负荷Fig.5 Environmental load of different cements
    图6 不同品种水泥单位强度的环境负荷Fig.6 Environmental load per unit strength of different cements
    图7 30 000次蒙特卡洛模拟结果标准差的变化Fig.7 Changes in standard deviation of results over 30 000 Monte Carlo simulations
    图8 水泥综合环境负荷的概率密度分布Fig.8 Probability density distribution of integrated environmental load indicator of Portland cement
    表 2 单位石灰石开采清单Table 2 Life cycle inventory of 1 t limestone mining
    参考文献
    [1] 国家统计局. 中国统计年鉴-2022[J]. 北京: 中国统计出版社, 2022.National Bureau of Statistics. China statistical yearbook-2022 [J]. Beijing: China Statistics Press, 2022. (in Chinese)
    [2] 高琦,肖建庄,沈剑羽.园林垃圾对工程弃土烧结砖性能的影响[J].建筑材料学报,2022,25(11):1195-1202.GAO Qi, XIAO Jianzhuang, SHEN Jianyu. Effects of garden waste on the properties of sintered bricks prepared with construction spoil[J]. Journal of Building Materials, 2022, 25(11):1195-1202. (in Chinese)
    [3] FAN C C, WANG B M, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash[J]. Journal of Cleaner Production, 2021, 319:128790.
    [4] LI X Y, ZHANG H, LIU M J, et al. Emission characteristics of dioxin during solid waste co-processing in the Chinese cement industry[J]. Journal of Hazardous Materials, 2023, 446:130680.
    [5] 郭晓潞,李寅雪,袁淑婷.水泥生命周期评价及其低环境负荷研究进展[J].建筑材料学报,2023,26(6):660-669,677.GUO Xiaolu, LI Yinxue, YUAN Shuting. Life cycle assessment of cement and its research progress in low environmental load[J]. Journal of Building Materials,2023,26(6):660-669,677. (in Chinese)
    [6] 蒋正武,尹军. 可持续混凝土发展的技术原则与途径[J].建筑材料学报,2016,19(6):957-963.JIANG Zhengwu, YIN Jun. Technical principles and approaches for development of sustainable concrete[J]. Journal of Building Materials,2016,19(6):957-963. (in Chinese)
    [7] KOSAJAN V, WEN Z G, FEI F, et al. The feasibility analysis of cement kiln as an MSW treatment infrastructure:From a life cycle environmental impact perspective[J]. Journal of Cleaner Production, 2020, 267:603-614.
    [8] HUANG T, TANG Y T, SUN Y, et al. Life cycle environmental and economic comparison of thermal utilization of refuse derived fuel manufactured from landfilled waste or fresh waste[J]. Journal of Environmental Management, 2022, 304:114156.
    [9] 王晓丽,林忠财.固废基低钙固碳水泥熟料组成设计及烧成过程[J].建筑材料学报,2022,25(11):1115-1120.WANG Xiaoli, LIN Zhongcai. Composition design and sintering process of solid waste-based low-calcium carbon-fixing cement clinker[J]. Journal of Building Materials,2022,25(11):1115-1120. (in Chinese)
    [10] 郭晓潞,施惠生. MSWIFA制CSA水泥基材料的抗压强度和耐久性[J].建筑材料学报,2014,17(2):201-205,255.GUO Xiaolu, SHI Huisheng. Compressive strength and durability of calcium sulphoaluminate(CSA) cement-based materials from municipal solid waste incineration fly ash(MSWIFA)[J]. Journal of Building Materials, 2014, 17(2):201-205,255. (in Chinese)
    [11] 李叶青. 水泥及混凝土绿色低碳制造技术[M]. 北京:中国建材工业出版社, 2022.LI Yeqing. Green low carbon manufacturing technology of cement and concrete[M]. Beijing:China Building Materials Press, 2022. (in Chinese)
    [12] 聂鹏. 燃煤火电厂大气汞污染环境影响及其排放标准实施效果数值模拟研究[D].北京:中国环境科学研究院,2014.NIE Peng. The study on emission standards for coal fired power plants of mercury and simulation of their environmental impact[D]. Beijing:Chinese Research Academy of Environmental Sciences, 2014. (in Chinese)
    [13] 刘夏璐,王洪涛,陈建,等.中国生命周期参考数据库的建立方法与基础模型[J].环境科学学报,2010,30(10):2136-2144.LIU Xialu, WANG Hongtao, CHEN Jian, et al. Method and basic model for development of Chinese reference life cycle database[J]. Acta Scientiae Circumstantiae, 2010,30(10):2136-2144. (in Chinese)
    [14] 田佩宁,毛保华,童瑞咏,等.我国交通运输行业及不同运输方式的碳排放水平和强度分析[J].气候变化研究进展,2023,19(3):347-356.TIAN Peining, MAO Baohua, TONG Ruiyong, et al. Analysis of carbon emission level and intensity of China’s transportation industry and different transportation modes[J]. Climate Change Research,2023,19(3):347-356. (in Chinese)
    [15] 王陶, 张志智, 孙潇磊. 不同柴油生产路径碳排放的分析与比较[J]. 当代石油石化, 2020, 28(12):28-31,54.WANG Tao, ZHANG Zhizhi, SUN Xiaolei. Analysis and comparison of carbon emissions from different diesel production routes[J].Petroleum & Petrochemical Today, 2020, 28(12):28-31,54. (in Chinese)
    [16] 高峰. 生命周期评价研究及其在中国镁工业中的应用[D]. 北京:北京工业大学, 2008.GAO Feng. Research on life cycle assessment and the application in China magnesium industry[D]. Beijing:Beijing University of Technology, 2008. (in Chinese)
    [17] 刘某承,李文华,谢高地.基于净初级生产力的中国生态足迹产量因子测算[J].生态学杂志,2010,29(3):592-597.LIU Moucheng, LI Wenhua, XIE Gaodi. Estimation of China ecological footprint production coefficient based on net primary productivity[J].Chinese Journal of Ecology, 2010,29(3):592-597. (in Chinese)
    [18] 方海峰,陈轶嵩,许海波.增程式电动轿车全生命周期节能减排效果分析[J].汽车实用技术, 2019, 299(20):22-25.FANG Haifeng, CHEN Yisong, XU Haibo. Life cycle assessment of energy conservation and emissions reduction extended-range electric vehicle[J].Automobile Applied Technology, 2019, 299(20):22-25. (in Chinese)
    [19] GUO X L, LI Y X, SHI H S, et al. Carbon reduction in cement industry - An indigenized questionnaire on environmental impacts and key parameters of life cycle assessment(LCA) in China[J]. Journal of Cleaner Production, 2023, 426:139022.
    [20] BICALHO T, SAUER I, RAMBAUD A, et al. LCA data quality:A management science perspective[J]. Journal of Cleaner Production, 2017, 156:888-898.
    [21] YU B, WANG S Y, GU X Y. Estimation and uncertainty analysis of energy consumption and CO2 emission of asphalt pavement maintenance[J]. Journal of Cleaner Production, 2018, 189:326-333.
    [22] 邵亦白,刘宇,郑焱,等.利废水泥熟料产品系统的生命周期清单分析方法及应用[J].中国水泥,2022,246(11):59-62.SHAO Yibai, LIU Yu, ZHENG Yan, et al. Life cycle inventory analysis method and application of waste clinker product system[J]. China Cement, 2022, 246(11):59-62. (in Chinese)
    [23] 侯星宇,张芸,戚昱,等.水泥窑协同处置工业废弃物的生命周期评价[J].环境科学学报,2015,35(12):4112-4119.HOU Xingyu, ZHANG Yun, QI Yu, et al. Life cycle assessment of co-processing industrial waste in a cement kiln[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4112-4119. (in Chinese)
    [24] TAO M, LU D M, SHI Y, et al. Utilization and life cycle assessment of low activity solid waste as cementitious materials:A case study of titanium slag and granulated blast furnace slag[J]. Science of the Total Environment, 2022, 849:157797.
    [25] 刘祥凯.水泥行业主要气态污染物(SO2、NOx和氟化物)排放特征研究[J].环境与可持续发展, 2016, 41(4):239-240.LIU Xiangkai. Research on emission characteristics of primary gaseous pollutants(sulfur dioxide, nitric oxide and fluoride) from the cement industry[J]. Environment and Sustainable Development, 2016, 41(4):239-240. (in Chinese)
    [26] STAFFORD F N, RAUPP-PEREIRA F, LABRINCHA J A, et al. Life cycle assessment of the production of cement:A Brazilian case study[J]. Journal of Cleaner Production, 2016, 137:1293-1299.
    [27] ZHANG W Y, SHI F F, ZHAO L Y, et al. Effect of biomineralization on the early mechanical properties and microstructure of fly-ash cement-based materials[J]. Construction and Building Materials, 2022, 359:129422.
    [28] SUPIT S W M, SHAIKH F U A, SARKER P K. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar[J]. Construction and Building Materials, 2014, 51:278-286.
    相似文献
    引证文献
引用本文

李寅雪,刘卓霖,任兵建,陶从喜,郭晓潞.水泥窑协同处置MSW环境负荷与性能耦合评价[J].建筑材料学报,2024,27(4):299-308

复制
分享
文章指标
  • 点击次数:137
  • 下载次数: 327
  • HTML阅读次数: 31
  • 引用次数: 0
历史
  • 收稿日期:2023-05-12
  • 最后修改日期:2023-11-09
  • 在线发布日期: 2024-05-11
文章二维码