钢渣-矿渣基胶凝材料的协同水化机理
作者:
作者单位:

1.兰州理工大学 材料科学与工程学院,甘肃 兰州 730050;2.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050;3.甘肃省交通规划勘察设计院股份有限公司,甘肃 兰州 730030

作者简介:

南雪丽(1977—),女,甘肃定西人,兰州理工大学教授,硕士生导师,硕士.E-mail:nanxueli@163.com

通讯作者:

南雪丽(1977—),女,甘肃定西人,兰州理工大学教授,硕士生导师,硕士.E-mail:nanxueli@163.com

中图分类号:

TU526

基金项目:

甘肃省住房和城乡建设厅科技规划项目(JK2021-11);甘肃省科技重大专项项目(21ZD3GA002);甘肃省交通运输厅2021年第一批揭榜挂帅制项目(2021-02)


Synergistic Hydration Mechanism of Steel Slag-Slag Based Cementitious Material
Author:
Affiliation:

1.School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;3.Gansu Provincial Transport Planning Survey and Design Institute Co., Ltd., Lanzhou 730030, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过胶砂强度试验及X射线衍射仪(XRD)、热失重分析(TG-DTG)、扫描电镜-能谱仪(SEM-EDS)等微观测试技术,对不同配合比钢渣-矿渣基胶凝材料的力学性能、水化产物及其水化硬化过程进行了研究.结果表明:当胶凝材料的n(CaO+MgO)/n(SiO2+Al2O3)=0.90时,其水化后期有较多的水化硅酸钙、水化铝酸钙凝胶生成,微观结构更加致密,力学性能表现最优,28 d抗压强度和抗折强度分别达到20.20、7.25 MPa;pH值的变化反映出协同水化效应的关键在于钢渣活性矿物的溶解和矿渣的二次火山灰反应,钢渣和矿渣的最佳配合比可以保证水化程度有较高的水平.

    Abstract:

    The mechanical properties, hydration products and hydration hardening processes of steel slag-slag based cementitious materials with different mix proportion were investigated using mortar strength tests and microscopic testing techniques such as X-ray diffraction (XRD), thermogravimetric analysis (TG-DTG) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The results show that when n(CaO+ MgO)/n(SiO2+Al2O3) is 0.90, more hydrated calcium silicate and hydrated calcium aluminate gels are generated in the later stage of hydration, the microstructure is more dense and the mechanical properties are the best. The compressive and flexural strength reach 20.20, 7.25 MPa at 28 days. The changes in pH value show the synergistic effect of hydration resulting from the dissolution of active minerals in steel slag and the occurrence of secondary fly ash reactions in slag. The optimal mix proportion of steel slag and slag ensures a higher level of hydration.

    表 1 钢渣和高炉矿渣的化学组成Table 1 Chemical compositions(by mass) of SS and GBFS
    表 2 胶凝材料的配合比Table 2 Mix proportions of cementitious materials
    图1 钢渣和高炉矿渣的粒径分布和XRD图谱Fig.1 Particle size distribution and XRD pattern SS and GBFS
    图2 胶凝材料的抗折强度和抗压强度Fig.2 Flexural strength and compressive strength of cementitious materials
    图3 养护龄期为28 d胶凝材料的XRD图谱Fig.3 XRD patterns of cementitious materials with curing age of 28 d
    图4 不同养护龄期下S3组试件的XRD图谱Fig.4 XRD patterns of S3 group specimens under different curing ages
    图5 胶凝材料的结晶度Fig.5 Crystallinity of cementitious materials
    图6 胶凝材料的TG-DTG曲线Fig.6 TG-DTG curves of cementitious materials
    图7 胶凝材料在各个温度区间的质量损失率Fig.7 Mass loss ratio of cementitious materials in each temperature interval
    图8 胶凝材料水化产物的FTIR图谱Fig.8 FTIR spectra of hydration products of cementitious materials
    图9 S3组试件的SEM-EDS分析Fig.9 SEM-EDS analysis of S3 group specimens
    图10 不同水化龄期下胶凝材料的pH值Fig.10 pH value of cementitious materials under different hydration ages
    参考文献
    [1] 聂松, 周健, 徐名凤, 等. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2):60-68.NIE Song, ZHOU Jian, XU Mingfeng, et al. Research progress of low carbon cementitious materials[J]. Materials Guide, 2024, 38(2):60-68. (in Chinese)
    [2] 王晓丽, 林忠财. 固废基低钙固碳水泥熟料组成设计及烧成过程[J]. 建筑材料学报, 2022, 25(11):1115-1120.WANG Xiaoli, LIN Zhongcai. Composition design and sintering process of solid waste-based low-calcium carbon-fixing cement clinker[J]. Journal of Building Materials, 2022, 25(11):1115-1120. (in Chinese)
    [3] 李楠, 张国防, 王培铭, 等. 钢渣对水泥砂浆早期干燥收缩和孔结构的影响[J]. 建筑材料学报, 2016, 19(4):712-718.LI Nan, ZHANG Guofang, WANG Peiming, et al. Effects of steel slag powder and steel slag sand on the early-aged dry shrinkage and pore structure of cement mortar[J]. Journal of Building Materials, 2016, 19(4):712-718. (in Chinese)
    [4] 赵德强, 张昺榴, 朱文尚, 等. 道路基层复合胶凝材料的性能调控[J]. 建筑材料学报, 2020, 23(5):1137-1143.ZHAO Deqiang, ZHANG Bingliu, ZHU Wenshang, et al. Performance regulation of composite cementitious materials for road subgrade[J]. Journal of Building Materials, 2020, 23(5):1137-1143. (in Chinese)
    [5] ZHAO J H, LI Z H, WANG D M, et al. Hydration superposition effect and mechanism of steel slag powder and granulated blast furnace slag powder[J]. Construction and Building Materials, 2023, 366:130101.
    [6] 刘继中, 赵庆新, 张津瑞, 等. 碱渣-矿渣复合胶凝材料硬化体的微观结构与组成[J]. 建筑材料学报, 2019, 22(6):872-877.LIU Jizhong, ZHAO Qingxin, ZHANG Jinrui, et al. Microstructure and composition of the hardened body of alkali-slag composite cementitious materials[J]. Journal of Building Materials, 2019, 22(6):872-877. (in Chinese)
    [7] BONDAR D, NANUKUTTAN S. External sulphate attack on alkali-activated slag and slag/fly ash concrete[J]. Buildings, 2022, 12(2):94.
    [8] DAI X D, AYDIN S, YARDIMCI M Y, et al. Early age reaction, rheological properties and pore solution chemistry of NaOH activated slag mixtures[J]. Cement and Concrete Composites, 2022, 133:104715.
    [9] 刘奎生, 段劲松, 孙建伟. 不同碱性环境对转炉钢渣水化和微观结构的影响[J]. 电子显微学报, 2021, 40(6):687-694.LIU Kuisheng, DUAN Jinsong, SUN Jianwei. Effect of different alkaline environments on the hydration and microstructure of converter slag[J]. Journal of Chinese Electron Microscopy Society, 2021, 40(6):687-694. (in Chinese)
    [10] AMER I, KOHAIL M, EL-FEKY M S, et al. A review on alkali-activated slag concrete[J]. Ain Shams Engineering Journal, 2021, 12(2):1475-1499.
    [11] AHMAD J, KONTOLEON K J, MAJDI A, et al. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production[J]. Sustainability, 2022, 14(14):8783.
    [12] LIN Y, YI Y R, FANG M H, et al. Prediction model for SiO2 activity in the CaO-Al2O3-SiO2-MgO quaternary slag system[J]. Minerals, 2023, 13(4):509.
    [13] LI X R, BIZZOZERO J, HESSE C. Impact of C-S-H seeding on hydration and strength of slag blended cement[J]. Cement and Concrete Research, 2022, 161:106935.
    [14] 李博, 陈伟. C-S-H凝胶分子结构研究进展[J]. 硅酸盐学报, 2019, 47(8):1095-1100.LI Bo, CHEN Wei. Advances in the molecular structure of C-S-H gels[J]. Journal of Silicates, 2019, 47(8):1095-1100. (in Chinese)
    [15] TANG S W, WANG Y, GENG Z C, et al. Structure, fractality, mechanics and durability of calcium silicate hydrates[J]. Fractal and Fractional, 2021, 5(2):47.
    [16] SONG H, JEONG Y, BAE S, et al. A study of thermal decomposition of phases in cementitious systems using HT-XRD and TG[J]. Construction and Building Materials, 2018, 169:648-661.
    [17] JOSEPH B, MATHEW G. Influence of aggregate content on the behavior of fly ash based geopolymer concrete[J]. Scientia Iranica, 2012, 19(5):1188-1194.
    [18] CHEN H, FENG P, YE S X, et al. The coupling effect of calcium concentration and pH on early hydration of cement[J]. Construction and Building Materials, 2018, 185:391-401.
    [19] 王升位, 闻一江, 洪项华, 等. 配合比和龄期对塑性混凝土强度、pH值和电导率的影响[J]. 建筑材料学报, 2022, 25(1):97-101.WANG Shengwei, WEN Yijiang, HONG Xianghua, et al. Effect of ratio and age on strength, pH and conductivity of plastic concrete[J]. Journal of Building Materials, 2022, 25(1):97-101. (in Chinese)
    [20] GALAN I, MÜLLER B, BRIENDL L G, et al. Continuous optical in-situ pH monitoring during early hydration of cementitious materials[J]. Cement and Concrete Research, 2021, 150:106584.
    引证文献
引用本文

南雪丽,杨旭,张宇,唐维斌,张富强.钢渣-矿渣基胶凝材料的协同水化机理[J].建筑材料学报,2024,27(4):366-374

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-08
  • 最后修改日期:2023-07-09
  • 在线发布日期: 2024-05-11
文章二维码