SFCC现场导热系数与温度场实测及预测方法研究
作者:
作者单位:

1.长安大学 公路学院,陕西 西安 710064;2.深圳中铁二局工程有限公司, 广东 深圳 518000;3.长安大学 未来交通学院,陕西 西安 710064

作者简介:

牛艳伟(1981—),男,山西定襄人,长安大学副教授,博士生导师,博士.E-mail:niuyanwei@chd.edu.cn

通讯作者:

汤颖颖(1984—),女,湖北竹溪人,长安大学讲师,博士.E-mail:tangyy@chd.edu.cn

中图分类号:

TU528.01

基金项目:

“十四五”国家重点研发计划项目(2021YFB2601002);国家自然科学基金资助项目(51208056);中央高校基本科研业务费专项资金资助项目(300102212909);陕西省自然科学基础研究计划(2023-JC-YB-292)


Experimental Study and Prediction of Thermal Conductivity and Temperature Field of Steel Fiber Reinforced Ceramsite Concrete
Author:
Affiliation:

1.School of Highway, Chang’an University, Xi’an 710064, China;2.Shenzhen Engineering Company of CREGC, Shenzhen 518000, China;3.College of Future Transportation, Chang’an University, Xi’an 710064, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为确定钢纤维页岩陶粒混凝土(SFCC)现场实际的导热系数,与桥面板施工同步制作了不同钢纤维体积分数的SFCC试件,采用热板法进行测定,校核并扩展了导热系数预测公式,并且对高温沥青摊铺时SFCC桥面板的温度场进行了实测和数值模拟.结果表明:环境湿度为67%时,SFCC的实测导热系数为0.915~1.409 W/(m·K),增加钢纤维体积分数可提高SFCC导热系数;考虑湿度和钢纤维影响后的扩展Maxwell公式预测值与实测值吻合良好;高温沥青摊铺时桥面板SFCC混凝土内的温度梯度可达20.5 ℃,超过规范日温差,采用数值模拟可有效计算桥面板温度场.

    Abstract:

    In order to determine the in situ actual thermal conductivity of steel fiber ceramsite concrete (SFCC), specimens were made synchronously with the construction of bridge deck and measured by the hot-plate method. The existing thermal conductivity prediction equation was verified and extended. Measurement and numerical simulation of temperature field of bridge deck during high temperature asphalt paving were carried out. The results show that when environment humidity is 67%, the measured thermal conductivity of SFCC is between 0.915-1.409 W/(m · K), and the increase of steel fiber will improve the thermal conductivity. Considering the environmental humidity and effect of steel fiber, the extend Maxwell equation prediction results agree well with test results. The temperature variation of SFCC under high temperature paving can attend 20.5 ℃, which is more unfavorable than daily temperature difference in the specification. The numerical simulation method can effectively calculate the temperature gradient of the bridge deck.

    表 2 钢纤维页岩陶粒混凝土配合比Table 2 Mix proportion of steel fiber reinforced ceramisite concrete
    图1 主梁及桥面示意图Fig.1 Main girder and deck detail (size:mm)
    图2 导热系数试件Fig.2 Thermal conductivity specimen
    图3 试件3#-3的局部图Fig.3 Partial view of specimen 3#-3
    图4 桥面板温度场传感器布设Fig.4 Distribution of deck temperature sensors(size:cm)
    图5 实测温度场传感器布设Fig.5 Distribution of sensors of temperature field
    图6 各试件导热系数试验值Fig.6 Experimental value of thermal conductivity of each specimen
    图7 SFCC与普通钢纤维混凝土的导热系数Fig.7 Thermal conductivity of SFCC and general steel fiber concrete
    图8 SFCC与SFC的导热系数增长率Fig.8 Growth rate of thermal conductivity for SFCC and SFC
    图9 Maxwell公式计算值与试验值对比Fig.9 Comparison of thermal conductivity from Maxwell equation and experimental value
    图10 扩展公式计算值与试验值对比Fig.10 Comparison of thermal conductivity from extended equation and experimental value
    图11 模型适用性分析Fig.11 Model feasibility analysis
    图12 实测温度场时变分布Fig.12 Distribution of temperature field varying with time
    图13 温度梯度对比Fig.13 Comparison of temperature gradient
    图14 Abaqus模拟时变温度分布Fig.14 Abaqus simulation of temperature distribution varying with time
    图15 导热系数对温度场影响的参数分析Fig.15 Parameter analysis of effect of thermal conductivity on temperature field
    表 1 原材料产地和规格Table 1 Production place and specification of raw material
    参考文献
    [1] 曹诚,杨玉强.高强轻集料混凝土在桥梁工程中应用的效益和性能特点分析[J].混凝土,2000(12):27-29.CAO Cheng, YANG Yuqiang. The properties and benefit analysis about using high-strength light aggregate concrete on bridge[J].Concrete, 2000(12):27-29. (in Chinese)
    [2] 冯江,童代伟,郝增恒,等.轻集料混凝土在桥梁工程中的应用及效益分析[J].公路交通技术,2006(3):74-77.FENG Jiang, TONG Daiwei, HAO Zengheng, et al. Application of light aggregate concrete in bridge project and benefit analysis[J]. Highway Traffic Technology, 2006(3):74-77. (in Chinese)
    [3] 刘瀚卿,白国良,朱可凡,等.煤矸石混凝土抗折强度试验研究[J].建筑材料学报,2023,26(4):346-352,377.LIU Hanqing, BAI Guoliang, ZHU Kefan, et al. Experimental study on flexural strength of coal gangue concrete[J]. Journal of Building Materials,2023,26(4):346-352,377. (in Chinese)
    [4] 权长青,焦楚杰,苏永亮,等.钢纤维及陶粒掺量对轻质混凝土基本力学性能的影响[J].复合材料学报,2018,35(5):1306-1314.QUAN Changqing, JIAO Chujie, SU Yongliang, et al. Influence of steel fibre and haycite adding content on the basic mechanical properties of lightweight concrete[J]. Journal of Composite Materials, 2018,35(5):1306-1314. (in Chinese)
    [5] 杨健辉,王彩峰,蔺新艳,等.纤维对全轻混凝土的断裂性能影响[J].混凝土,2019(2):72-75,84.YANG Jianhui, WANG Caifeng, LIN Xinyan, et al. Effects of fibre on fracture properties of all lightweight concrete[J]. Concrete, 2019(2):72-75,84. (in Chinese)
    [6] 周凯,谷倩,余东燕,等.预制页岩陶粒混凝土预留孔灌浆钢筋黏结性能试验研究[J].工业建筑,2019,49(1):95-99.ZHOU Kai, GU Qian, YU Dongyan, et al. Experimental study on bond behavior of steel bars in grouted hole of precast shale ceramsite concrete[J]. Industrial Buildings, 2019,49(1):95-99. (in Chinese)
    [7] 肖建庄,宋志文,张枫.混凝土导热系数试验与分析[J].建筑材料学报,2010,13(1):17-21.XIAO Jianzhuang, SONG Zhiwen, ZHANG Feng. An experimental study on thermal conductivity of concrete[J]. Journal of Building Materials, 2010, 13(1):17-21. (in Chinese)
    [8] 高志涵,陈波,陈家林,等.基于X-CT的泡沫混凝土孔隙结构与导热性能[J].建筑材料学报, 2023, 26(7):723-730.GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023,26(7):723-730. (in Chinese)
    [9] 张伟平,童菲,邢益善,等.混凝土导热系数的试验研究与预测模型[J].建筑材料学报,2015,18(2):183-189.ZHANG Weiping, TONG Fei, XING Yishan, et al. Experimental study and prediction model of thermal conductivity of concrete[J]. Journal of Building Materials, 2015, 18(2):183-189. (in Chinese)
    [10] 宫经伟,陈鹏,曹国举,等.考虑孔溶液相变的寒区混凝土导热系数计算模型[J].建筑材料学报,2023,26(5):465-474.GONG Jingwei, CHEN Peng, CAO Guoju, et al. Calculation model of thermal conductivity of concrete in cold regions considering pore-solution phase transformation[J]. Journal of Building Materials, 2023,26(5):465-474. (in Chinese)
    [11] 朱振中,刘元珍,王文婧,等.玄武岩纤维陶粒混凝土抗裂性能与热工性能试验研究[J].硅酸盐通报,2023,42(3):908-916.ZHU Zhenzhong, LIU Yuanzhen, WANG Wenjing, et al. Experimental study on crack resistance and thermal performance of basalt fiber concrete[J].Bulletin of the Chinese Ceramic Society, 2023, 42(3):908-916. (in Chinese)
    [12] CHEN G X, WANG K. Mechanical and thermal properties of glass fibre-reinforced ceramsite-foamed concrete[J]. Indoor and Built Environment, 2018, 27(7):890-897.
    [13] WANG Q, ZHANG C B , DING Z Y, et al. Study on the thermal properties of paraffin/ceramsite phase change concrete[J]. Advanced Materials Research, 2014, 838-841(1):91-95.
    [14] 陈晓强,刘其伟.钢-混凝土组合箱梁桥沥青摊铺温度场的试验与理论对比分析[J].铁道科学与工程学报,2009,6(5):5-10.CHEN Xiaoqiang, LIU Qiwei. Temperature experiment and analysis of steel-concrete composite girder bridge caused by asphalt paving[J]. Journal of Railway Science and Engineering, 2009, 6(5):5-10. (in Chinese)
    [15] 孙金,冯小青,唐焱,等.高温沥青摊铺时钢-混叠合梁桥温度场有限元分析[J].中外公路,2018,38(3):216-221.SUN Jin, FENG Xiaoqing, TANG Yan, et al. Finite element analysis on temperature field of steel-concrete composite girder bridge under high temperature asphalt paving[J]. Journal of China-Foreign Highway, 2018, 38 (3):216-221. (in Chinese)
    [16] 刘凯,王芳,王选仓.水泥混凝土导热性能影响因素及预估模型研究[J].建筑材料学报,2012,15(6):771-777.LIU Kai, WANG Fang, WANG Xuancang. Influence factor of thermal conductivity of cement concrete and its prediction model[J]. Journal of Building Materials, 2012,15 (6):771-777. (in Chinese)
    [17] 王卫仑,刘鹏,邢锋.自然环境湿度变化与混凝土内湿度响应[J].中南大学学报(自然科学版),2013,44(12):5109-5116.WANG Weilun, LIU Peng, XING Feng. Change of natural environment humidity and response of humidity in concrete[J]. Journal of Central South University(Science and Technology), 2013, 44 (12):5109-5116. (in Chinese)
    [18] 徐宁,黄庆华,张伟平,等.混凝土结构空间多尺度相对湿度值[J].土木建筑与环境工程,2012,34(1):35-41.XU Ning, HUANG Qinghua, ZHANG Weiping, et al. Spatial multi-scale relative humidity values for concrete structures[J]. Journal of Civil and Environmental Engineering, 2012, 34(1):35-41. (in Chinese)
    [19] 梅明荣,杨勇,王山山,等.钢纤维混凝土热性能及其防裂作用的研究[J].水利学报,2007,38(增刊1):111-117.MEI Mingrong, YANG Yong, WANG Shanshan, et al. Study of thermal property of steel-fiber concrete and its crack-resistance capacity[J]. Journal of Hydraulic Engineering, 2007, 38(Suppl 1):111-117. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牛艳伟,匡笑艳,郑军涛,党王辉,汤颖颖.SFCC现场导热系数与温度场实测及预测方法研究[J].建筑材料学报,2024,27(3):245-252

复制
分享
文章指标
  • 点击次数:154
  • 下载次数: 323
  • HTML阅读次数: 16
  • 引用次数: 0
历史
  • 收稿日期:2023-05-05
  • 最后修改日期:2023-09-13
  • 在线发布日期: 2024-04-07
文章二维码