基于逆Leidenfrost效应的多孔地聚合物微球孔结构及pH缓冲性能
作者:
作者单位:

华南理工大学 材料科学与工程学院,广东 广州 510641

作者简介:

李方贤(1979—),男,湖北监利人,华南理工大学副教授,硕士生导师,博士.E-mail: msfxli@scut.edu.cn

通讯作者:

李方贤(1979—),男,湖北监利人,华南理工大学副教授,硕士生导师,博士.E-mail: msfxli@scut.edu.cn

中图分类号:

TU526

基金项目:

广东省自然科学基金资助项目(2021A1515010719);环境友好能源材料国家重点实验室开放基金资助项目(21kfhg16);国家自然科学基金资助项目(52372025)


Pore Structure and pH Buffering Performance of Porous Geopolymer Microspheres Based on Inverse Leidenfrost Effect
Author:
Affiliation:

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以水玻璃、矿渣粉为材料,基于逆Leidenfrost效应制备了多孔地聚合物微球,研究了其孔结构及pH缓冲性能.结果表明:改变水玻璃掺量和水固比可以调控多孔地聚合物微球的孔结构和pH缓冲性能;当水固比为1.0、水玻璃掺量由4%增大至8%时,微球的孔隙率、中位孔径和孔比表面积均减小,pH值波动范围为1.50~1.90;当水玻璃掺量为4%、水固比由1.0增大至1.2时,微球的孔隙率、中位孔径和孔比表面积均增大,pH值波动范围超过2.00;与双氧水直接发气法制备的多孔地聚合物相比,基于逆Leidenfrost效应制备的多孔地聚合物具有更好的pH缓冲性能和更高的OH-累积浸出量.

    Abstract:

    Porous geopolymer microspheres were prepared using water glass and slag as raw materials based on inverse Leidenfrost effect. The results reveal that the pore structure and pH buffering performance of the porous geopolymer microspheres can be adjusted by varying the water glass content and the water-solid ratio. When the water-solid ratio is 1.0 and the water glass content is raised from 4% to 8%, a decrease in the median pore radius, porosity, and pore specific surface area of microspheres is observed, and pH fluctuation is in the range of 1.50-1.90. When the water glass content is 4% and the water-solid ratio increases from 1.0 to 1.2, the median pore radius, porosity, and pore specific surface area of microspheres increase, and pH fluctuation exceeds 2.00. Notably, the inverse Leidenfrost effect results in the preparation of porous geopolymers with superior pH buffering performance and higher cumulative leaching amount of OH- compared to those generated via direct gassing with hydrogen peroxide.

    表 3 孔结构参数Table 3 Parameters of pore structure
    表 1 矿渣粉的化学组成Table 1 Chemical composition(by mass) of GBFS
    图1 采用逆Leidenfrost效应制备多孔地聚合物微球的示意图Fig.1 Schematic diagram of preparation of porous geopolymer microspheres based on inverse Leidenfrost effect
    图2 不同水玻璃掺量下微球样品MIP测试结果Fig.2 MIP results of microsphere samples with different water glass contents(mW/mS=1.0)
    图3 不同水固比下微球样品的MIP测试结果Fig.3 MIP results of microsphere samples with different water-solid ratios(wWG=4%)
    图4 微球样品R1.0S4和R1.2S4的SEM图Fig.4 SEM images of microsphere sample R1.0S4 and R1.2S4
    图5 多孔地聚合物微球的XRD图谱Fig.5 XRD patterns of porous geopolymer microspheres
    图6 多孔地聚合物微球浸出液pH值随时间的变化Fig.6 pH value of the leached solution of porous geopolymer microspheres changed with time
    图7 多孔地聚合物微球中OH-的累积浸出量和浸出率Fig.7 Cumulative leaching amount and ratio of OH- in porous geopolymer microspheres
    图8 pH缓冲测试后样品的孔径分布Fig.8 Pore size distribution of samples after pH buffering test
    图9 pH缓冲测试前后样品的测试结果Fig.9 Thermal analysis results of samples before and after pH buffering test
    图10 双氧水直接发气法制备的多孔地聚合物中0.01~100.00 µm的孔径分布Fig.10 Pore size distribution of 0.01-100.00 μm pores for porous geopolymer prepared by direct gassing with hydrogen peroxide
    图11 双氧水直接发气法制备的多孔地聚合物中100~4 000 µm的累积孔分布情况Fig.11 Cumulative pore size distribution of 100-4 000 μm pores for porous geopolymers prepared by direct gassing with hydrogen peroxide
    图12 不同成孔方式下多孔地聚合物的OH-累积浸出量的对比Fig.12 Comparison of OH- cumulative leaching amount of porous geopolymers with different pore-forming methods(wWG=8%)
    表 2 多孔地聚合物微球的配合比Table 2 Mix proportions of porous geopolymer microspheres
    参考文献
    [1] BENITO P, LEONELLI C, MEDRI V, et al. Geopolymers: A new and smart way for a sustainable development[J]. Applied Clay Science, 2013, 73:1-6.
    [2] SINGH B, ISHWARYA G, GUPTA M, et al. Geopolymer concrete:A review of some recent developments[J]. Construction and Building Materials, 2015, 85:78-90.
    [3] 丁兆洋,苏群,李明泽,等. 水玻璃模数对地聚物再生混凝土力学性能的影响[J]. 建筑材料学报,2023,26(1):61-70.DING Zhaoyang, SU Qun, LI Mingze, et al. Effect of modulus of water glass on mechanical properties of geopolymer recycled aggregate concrete[J]. Journal of Building Materials, 2023, 26(1):61-70. (in Chinese)
    [4] REN B, ZHAO Y L, BAI H Y, et al. Eco-friendly geopolymer prepared from solid wastes:A critical review[J]. Chemosphere, 2021, 267:128900.
    [5] 曹瑞林,李保亮,贾子健,等. 锂渣在碱-水热环境下的溶出特性和反应产物[J]. 建筑材料学报,2023,26(2):163-171.CAO Ruilin, LI Baoliang, JIA Zijian, et al. Leaching characteristics and reaction products of lithium slag in alkali-hydrothermal environment[J]. Journal of Building Materials, 2023, 26(2):163-171. (in Chinese)
    [6] 陈柯宇,吴大志,胡俊涛,等. 废弃玻璃替代河砂对地聚合物砂浆性能的影响[J]. 建筑材料学报,2022,25(6):577-584.CHEN Keyu, WU Dazhi, HU Juntao, et al. Impact of substitution of river sand by waste glass on properties of geopolymer mortar[J]. Journal of Building Materials, 2022, 25(6):577-584. (in Chinese)
    [7] 彭晖,李一聪,罗冬,等. 碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J]. 建筑材料学报,2020,23(6):1390-1397.PENG Hui, LI Yicong, LUO Dong, et al. Analysis of rection level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials, 2020, 23(6):1390-1397. (in Chinese)
    [8] LLOYD R R, PROVIS J L, VAN DEVEVTER J S J. Pore solution composition and alkali diffusion in inorganic polymer cement[J]. Cement and Concrete Research, 2010, 40(9):1386-1392.
    [9] ŠKVÁRA F, ŠMILAUER V, HLAVÁČEK P, et al. A weak alkali bond in (N, K)-A-S-H gels:Evidence from leaching and modeling[J]. Ceramics-Silikaty, 2012, 56(4):374-382.
    [10] ZHANG Z H, PROVIS J L, REID A, et al. Fly ash-based geopolymers:The relationship between composition, pore structure and efflorescence[J]. Cement and Concrete Research, 2014, 64:30-41.
    [11] NAJAFI KANI E, ALLAHVERDI A, PROVIS J L. Efflorescence control in geopolymer binders based on natural pozzolan[J]. Cement and Concrete Composites, 2012, 34(1):25-33.
    [12] XUE X, LIU Y L, DAI J G, et al. Inhibiting efflorescence formation on fly ash-based geopolymer via silane surface modification[J]. Cement and Concrete Composites, 2018, 94:43-52.
    [13] NOVAIS R M, BURUBERRI L H, SEABRA M P, et al. Novel porous fly ash-containing geopolymers for pH buffering applications[J]. Journal of Cleaner Production, 2016, 124:395-404.
    [14] CHEN N, LIU W F, HUANG J H, et al. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation[J]. International Journal of Biological Macromolecules, 2020, 146:9-17.
    [15] PENG W J, LÜ S, CAO Y J, et al. A novel pH-responsive flocculant for efficient separation and recovery of Cu and Mo from secondary resources via selective flocculation-flotation[J]. Journal of Cleaner Production, 2023, 395:136463.
    [16] 闫旭,李琦路,韩云平,等. pH对污水好氧处理过程N2O产生的影响[J]. 环境工程学报,2015,9(7):3240-3246.YAN Xu, LI Qilu, HAN Yunping, et al. Effect of pH value on N2O production in aerobic wastewater treatment process[J]. Chinese Journal of Environmental Engineering, 2015, 9(7):3240-3246. (in Chinese)
    [17] ZHANG C S, SU H J, BAEYENS J, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38:383-392.
    [18] 王晴,康升荣,吴丽梅,等. 地聚合物凝胶体系中N-A-S-H和C-A-S-H结构的分子模拟[J]. 建筑材料学报,2020,23(1):184-191.WANG Qing, KANG Shengrong, WU Limei, et al. Molecular simulation N-A-S-H and C-A-S-H in geopolymer cementitious system[J]. Journal of Building Materials, 2020, 23(1):184-191. (in Chinese)
    [19] LEIDENFROST J G. De aquae communis nonnullis qualitatibus tractatus[M]. Duisburg: Ovenius, 1756.
    [20] BUMANIS G. The effect of alkaline material particle size on adjustment ability of buffer capacity[J]. Materials Science-Mediagotyra, 2015, 21(3):405-409.
    [21] NOVAIS R M, SEABRA M P, LABRINCHA J A. Porous geopolymer spheres as novel pH buffering materials[J]. Journal of Cleaner Production, 2017, 143:1114-1122.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李方贤,王亚松,张志博,韦江雄,余其俊.基于逆Leidenfrost效应的多孔地聚合物微球孔结构及pH缓冲性能[J].建筑材料学报,2024,27(3):267-274

复制
分享
文章指标
  • 点击次数:199
  • 下载次数: 433
  • HTML阅读次数: 17
  • 引用次数: 0
历史
  • 收稿日期:2023-04-09
  • 最后修改日期:2023-11-10
  • 在线发布日期: 2024-04-07
文章二维码