PE纤维与细橡胶颗粒对泡沫混凝土弯曲韧性的影响
作者:
作者单位:

中南大学 土木工程学院,湖南 长沙 410018

作者简介:

吴 昊(2000—),男,河南南阳人,中南大学硕士生.E-mail:214811034@csu.edu.cn

通讯作者:

龙广成(1973—),男,江西万载人,中南大学教授,博士生导师,博士.E-mail:longguangcheng@csu.edu.cn

中图分类号:

TU528.2

基金项目:

国家自然科学基金资助项目(52078490,52208300)


Effects of PE Fiber and Fine Rubber Particles on Flexural Toughness of Foam Concrete
Author:
Affiliation:

School of Civil Engineering, Central South University, Changsha 410018, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究了聚乙烯(PE)纤维及其与细橡胶颗粒复掺对泡沫混凝土弯曲破坏模式、峰值强度、能量吸收特性和弯曲韧性的影响,并结合孔结构分析和微观形貌观察探究了其作用机理.结果表明:PE纤维使泡沫混凝土出现多缝开裂模式,显著提升了其峰值强度、能量吸收能力和弯曲韧性;复掺细橡胶颗粒可以进一步提升泡沫混凝土试件的比能量吸收和弯曲韧性;掺入PE纤维可以降低泡沫混凝土的平均孔径;复掺细橡胶颗粒导致泡沫混凝土试件的平均孔径增大,联通孔增多,对其峰值强度有不利影响;PE纤维及细橡胶颗粒提升泡沫混凝土弯曲韧性的主要原因在于其削弱了裂纹尖端的应力集中,同时增强了能量耗散作用.

    Abstract:

    The effects of polyethylene(PE) fiber and its combinayion with fine rubber particles on the flexural damage mode, peak strength, energy absorption characteristics, and flexural toughness of foam concrete were investigated, and the mechanism of action was explored by combining pore structure analysis with microscopic morphological observation. The results show that PE fibers cause the multiple cracking modes of the foam concrete and significantly improve the peak strength, energy absorption capacity, and flexural toughness of the foam concrete specimens. Combining with fine rubber particles can further enhance the specific energy absorption and flexural toughness of the foam concrete specimens. The incorporation of PE fibers could reduce the average pore size of the foam concrete. Combining with fine rubber particles leads to an increase in the average pore size and the number of coupled pores, which has a negative impact on the peak strength of the foam concrete specimens. The main reasons for PE fiber and combination with fine rubber particles to enhance the flexural toughness of foam concrete are their weakening of stress concentration at the crack tip and enhancement of energy dissipation.

    表 7 试件的孔隙参数Table 7 Pore parameters of specimens
    表 1 水泥和硅灰的化学组成Table 1 Chemical compositions(by mass) of cement and silica fume
    表 6 不同类型纤维增强泡沫混凝土的弯曲韧性指数对比Table 6 Comparison of flexural toughness index of different types of fiber reinforced Foam concrete
    表 5 试件的等效弯曲韧度比Table 5 Equivalent flexural toughness ratios of specimens
    表 4 试件的弯曲韧性指数Table 4 Flexural toughness indexes of specimens
    图1 弯曲性能测试Fig.1 Flexural performance test(size:mm)
    图2 样品的孔隙图像Fig.2 Pore image of sample
    图3 典型试件的破坏特征Fig.3 Damage characteristics of typical specimens
    图4 试件的弯曲荷载-挠度曲线Fig.4 Flexural load-deflection curves of specimens
    图5 试件的峰值强度与比强度Fig.5 Peak strength and specific strength of specimens
    图6 试件的能量吸收能力与比能量吸收Fig.6 Energy absorption capacity and specific energy absorption of specimens
    图7 试件的孔隙图像Fig.7 Pore images of specimens
    图8 试件的微观形貌Fig.8 Microscopic morphologies of specimens
    表 2 PE纤维的基本性能Table 2 Basic properties of PE fiber
    表 3 各组试件的配合比Table 3 Mix proportions of each group of specimens
    参考文献
    [1] 宋强,张鹏,鲍玖文,等. 泡沫混凝土的研究进展与应用[J].硅酸盐学报,2021,49(2):398-410.SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2):398-410. (in Chinese)
    [2] YANG Y Y, ZHOU Q, DENG Y, et al. Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites[J]. Cement and Concrete Composites, 2022, 128:104422.
    [3] 曾志军,徐文,谢德擎, 等. 机场拦阻系统泡沫混凝土海水侵蚀性能劣化规律[J]. 交通运输工程学报, 2021, 21(2):56-65.ZENG Zhijun, XU Wen, XIE Deqing, et al. Performance deterioration law of foam concrete in airport arresting system under seawater corrosion[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2):56-65. (in Chinese)
    [4] 王激扬,马卫强,胡志华, 等. PE纤维掺量对水泥基复合材料力学性能的影响[J]. 浙江大学学报(工学版), 2017, 51(11):2130-2135, 2214.WANG Jiyang, MA Weiqiang, HU Zhihua, et al. Effect of PE fiber content on mechanical behavior of cementitious composite[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(11):2130-2135, 2214. (in Chinese)
    [5] 刘家兴,杨荣周,徐颖, 等.超高强度橡胶混凝土的力学特性及能量演化[J]. 建筑材料学报, 2023, 26(6):612-622.LIU Jiaxing, YANG Rongzhou, XU Ying, et al. Mechanical properties and energy evolution of ultra high strength rubber concrete[J]. Journal of Building Materials, 2023, 26(6):612-622. (in Chinese)
    [6] 王俊颜,庄云芳,刘菲凡,等. 减缩剂和PVA纤维对超轻水泥复合材料收缩开裂行为的影响[J]. 建筑材料学报, 2022, 25(7):744-750.WANG Junyan, ZHUANG Yunfang, LIU Feifan, et al. Effect of shrinkage reduce admixture and PVA fiber on shrinkage cracking behaviors of ultra lightweight cement composite[J]. Journal of Building Materials, 2022, 25(7):744-750. (in Chinese)
    [7] ZHOU W M, MO J X, ZENG L, et al. Fracture behavior of polypropylene fiber reinforced concrete modified by fine rubber particles exposed to elevated temperatures[J]. Construction and Building Materials, 2022, 346:128439.
    [8] 白光,田义,余林文,等. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 材料导报, 2018, 32(12):2096-2099.BAI Guang, TIAN Yi, YU Linwen, et al. Effect of PVA fiber on the properties of alkali activated slag foam concrete[J]. Materials Reports, 2018, 32(12):2096-2099. (in Chinese)
    [9] YANG Y Y, ZHOU Q , DENG Y. The reinforcement attributes of multi-scale hybrid fiber throughout the uniaxial compression of ultra-low-weight foamed cement-based composites[J]. Construction and Building Materials, 2020, 242:118184.
    [10] 李升涛,陈徐东,张锦华,等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6):1146-1153.LI Shengtao, CHEN Xudong, ZHANG Jinhua, et al. Failure characteristics of foam concrete with different density under uniaxial compression[J]. Journal of Building Materials, 2021, 24(6):1146-1153. (in Chinese)
    [11] 黄海健,宫能平,穆朝民,等. 泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2):466-472.HUANG Haijian, GONG Nengping, MU Zhaomin, et al. Dynamic mechanical properties and constitutive relation of foam concrete[J]. Journal of Building Materials, 2020, 23(2):466-472. (in Chinese)
    [12] 庞超明,王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1):93-98.PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials, 2017, 20(1):93-98. (in Chinese)
    [13] 张雄,黄廷皓,张永娟,等. Image-Pro Plus混凝土孔结构图像分析方法[J]. 建筑材料学报, 2015, 18(1):177-182.ZHANG Xiong, HUANG Tinghao, ZHANG Yongjuan, et al. Image-Pro Plus analysis of pore structure of concrete[J]. Journal of Building Materials, 2015, 18(1):177-182. (in Chinese)
    [14] SHANG J, ZHAO K Y, ZHANG P, et al. Flexural behavior of plain concrete beams containing strain hardening cementitious composite layers with high-volume fly ash[J]. Construction and Building Materials, 2021, 286:122867.
    [15] SHAFIGH P, CHAI L J, MAHMUD H B, et al. A comparison study of the fresh and hardened properties of normal weight and lightweight aggregate concretes[J]. Journal of Building Engineering, 2018, 15:252-260.
    [16] RAJ B, SATHYAN D, MADHAVAN M K, et al. Mechanical and durability properties of hybrid fiber reinforced foam concrete[J]. Construction and Building Materials, 2020, 245:118373.
    [17] SHAO J W, ZHU H, ZHAO B, et al. Combined effect of recycled tire rubber and carbon nanotubes on the mechanical properties and microstructure of concrete[J]. Construction and Building Materials, 2022, 322:126493.
    [18] 于泽明,陈艳,马嵘萍, 等. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(增刊2):669-677.YU Zeming, CHEN Yan, MA Rongping, et al. Study on energy absorption characteristics of BF-SP-EPS concrete under dynamic/static load[J]. Materials Reports, 2021, 35(Suppl 2):669-677. (in Chinese)
    [19] 高丹盈,赵亮平,冯虎, 等. 钢纤维混凝土弯曲韧性及其评价方法[J]. 建筑材料学报, 2014, 17(5):783-789.GAO Danying, ZHAO Liangping, FENG Hu, et al. Flexural toughness and it’s evaluation method of steel fiber reinforced concrete[J]. Journal of Building Materials, 2014, 17(5):783-789. (in Chinese)
    [20] DAWOOD E T, HAMAD A J. Toughness behaviour of high-performance lightweight foamed concrete reinforced with hybrid fibres[J]. Structural Concrete, 2015, 16(4):496-507.
    [21] DAWOOD E T, MOHAMMAD Y Z, ABBAS W A, et al. Toughness, elasticity and physical properties for the evaluation of foamed concrete reinforced with hybrid fibers[J]. Heliyon, 2018, 4(12):e01103.
    [22] 詹奇淇,詹炳根. 玄武岩纤维增强泡沫混凝土韧性及抗压强度试验研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(5):667-672.ZHAN Qiqi, ZHAN Binggen. Experimental study on toughness and compressive strength of basalt fiber reinforced foamed concrete[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43 (5):667-672. (in Chinese)
    [23] GHAHREMANI G, BAGHERI A, ZANGANEH H. The effect of size and shape of pores on the prediction model of compressive strength of foamed concrete[J]. Construction and Building Materials, 2023, 371:130720.
    [24] 胡艳丽,郝晋高,赵向敏, 等. 泡沫轻质混凝土性能与孔结构关系研究[J]. 南京理工大学学报(自然科学版), 2019, 43(3):363-366.HU Yanli, HAO Jingao, ZHAO Xiangmin, et al. Relationship between properties and pore structure offoamed lightweight concrete[J]. Journal of Nanjing University of Science and Technology(Natural Science), 2019, 43(3):363-366. (in Chinese)
    [25] YANG K, LONG G C, TANG Z, et al. Enhancement in strength and toughness of ultra-high performance concrete(UHPC) from micron- and nano-scale[J]. Journal of Building Engineering, 2023, 69:106308.
    [26] FENG W H, CHEN Z, TANG Y C, et al. Fracture characteristics of sustainable crumb rubber concrete under a wide range of loading rates[J]. Construction and Building Materials, 2022, 359:129474.
    [27] FANG M J, CHEN Y M, DENG Y G, et al. Toughness improvement mechanism and evaluation of cement concrete for road pavement:A review[J]. Journal of Road Engineering, 2023(2):125-140.
    [28] CHENG Z Q, YANG K, TANG Z, et al. Experimental investigation on flexural and compressive toughness of mortar and concrete with hybrid toughening materials[J]. Structures, 2022, 43:1592-1599.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴昊,龙广成,杨恺,曾晓辉,唐卓.PE纤维与细橡胶颗粒对泡沫混凝土弯曲韧性的影响[J].建筑材料学报,2024,27(3):206-214

复制
分享
文章指标
  • 点击次数:168
  • 下载次数: 449
  • HTML阅读次数: 25
  • 引用次数: 0
历史
  • 收稿日期:2023-04-06
  • 最后修改日期:2023-06-14
  • 在线发布日期: 2024-04-07
文章二维码