混杂纤维/束高强混凝土的抗冻性
作者:
作者单位:

1.郑州大学 土木工程学院,河南 郑州 450001;2.福州大学 土木工程学院, 福建 福州 350108;3.河南交院工程技术集团有限公司,河南 郑州 450015

作者简介:

李趁趁(1977—),女,河南济源人,郑州大学副教授,硕士生导师,博士. E-mail: lcc0506@zzu.edu.cn

通讯作者:

张 普(1982—),男,河南周口人,郑州大学教授,博士生导师,博士. E-mail: zhpu@zzu.edu.cn

中图分类号:

TU528.572

基金项目:

交通部重点研发项目(2018-MS5-136);河南省交通运输行业重点科技项目(2018J2,2019J-2-10)


Freezing Resistance of Hybrid Fiber/Bundle High Strength Concrete
Author:
Affiliation:

1.College of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China;2.College of Civil Engineering, Fuzhou University, Fuzhou 350108, China;3.Henan Communications Engineering Technology Group Co., Ltd., Zhengzhou 450015, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高混凝土的抗冻性及促进工业废料的应用,利用快冻法对混凝土试件进行冻融试验,测试冻融前后试件的相对动弹性模量(Er)和抗压强度,研究单掺玄武岩纤维束(BMF)、双掺短切玄武岩纤维(CBF)和BMF以及在双掺的较优配比基础上继续掺加硫酸钙晶须(CSW)对高强混凝土抗冻性能的影响.结果表明:素高强混凝土(PC)在经历150次冻融循环后的Er值为52.4%,视为冻融破坏;单掺、双掺和三掺均提高了高强混凝土的抗冻性,三掺的效果最好;当BMF体积分数为0.30%、CBF掺量为0.15%、CSW掺量为水泥质量的3%时,高强混凝土试件(CSW3CBF0.15BMF0.3)的抗冻性最佳,经历300次冻融循环后的Er值为86.6%,仍未冻融破坏;试件CSW3CBF0.15BMF0.3在经历150次冻融循环后的抗压强度损失率仅为2.5%,远低于PC(30.9%);CSW、CBF和BMF发挥混掺效应,多尺度阻止了高强混凝土的冻胀开裂.

    Abstract:

    To improve the freezing resistance of high strength concrete and expand the application of industrial waste, the freeze-thaw test of concrete specimens was carried out by rapid freeze-thaw method, the relative dynamic modulus of elasticity(Er) and compressive strength of the specimens before and after freeze-thaw were acquired, the effects of single basalt macro-fibers (BMF), double mixed chopped basalt fibers (CBF) and BMF and calcium sulfate whiskers (CSW) on the freezing resistance of high strength concrete were studied. The results show that freeze-thaw failure occurs during 150 cycles for plain high strength concrete (PC), and Er value is 52.4%. Single BMF, double mixed CBF and BMF and adding them all can improve the freezing resistance of high strength concrete, and adding them all in the concrete can get the best effect. The freezing resistance of high strength concrete is the best when the volume fraction of BMF is 0.30%, the volume fraction of CBF is 0.15% and the mass fraction of CSW is 3%(CSW3CBF0.15BMF0.3), Er value is 86.6% after 300 freeze-thaw cycles. Loss ratio of compressive strength is only 2.5% for specimen CSW3CBF0.15BMF0.3 after 150 cycles, but is 30.9% for PC. CSW, CBF and BMF play a mixing effect and prevent freeze swelling cracking of high strength concrete in multi-scale.

    表 4 硫酸钙晶须的物理力学性能Table 4 Physical and mechanical properties of calcium sulfate whisker
    表 2 粗骨料的级配组成Table 2 Gradation of coarse aggregates
    表 6 单掺玄武岩纤维束混凝土的配合比Table 6 Mix proportions of single basalt macro-fibers concretes
    表 8 三掺短切玄武岩纤维、玄武岩纤维束和硫酸钙晶须混凝土的配合比Table 8 Mix proportions of concretes with chopped basalt fiber, basalt macro-fibers and calcium sulfate whiskers
    表 5 水泥和硫酸钙晶须的化学组成Table 5 Chemical compositions of cement and calcium sulfate whisker
    表 1 细骨料的级配组成Table 1 Gradation of fine aggregates
    表 3 单丝玄武岩纤维的物理力学性能Table 3 Physical and mechanical properties of single basalt fiber
    图1 水泥的粒径分布Fig.1 Size distribution of cement particles
    图2 玄武岩纤维束与短切玄武岩纤维的外观Fig.2 Morphology of basalt macro-fibers and chopped basalt fibers
    图3 硫酸钙晶须的形貌Fig.3 Morphology of calcium sulfate whiskers
    图4 单掺BMF对高强混凝土相对动弹性模量的影响Fig.4 Effect of BMF on relative dynamic elastic modulus of high strength concrete
    图5 混杂玄武岩纤维/束掺量对相对动弹性模量的影响Fig.5 Effect of hybrid basalt fiber/bundle content on relative dynamic elastic modulus
    图6 三掺短切玄武岩纤维、玄武岩纤维束和硫酸钙晶须高强混凝土的相对动弹性模量Fig.6 Relative dynamic elastic modulus of high strength concretes with chopped basalt fibers, basalt macro-fibers and calcium sulfate whiskers
    图7 单掺BMF对高强混凝土抗压强度损失率的影响Fig.7 Effect of single BMF on LR of high strength concretes
    图8 CBF/BMFRC冻融循环150次后的抗压强度损失率Fig.8 LR of hybrid CBF and BMF high strength concretes after 150 freeze-thaw cycles
    图9 CSW/CBF/BMFRC冻融循环150次后的抗压强度损失率Fig.9 LR of high strength concrete with CBF, BMF and CSW after 150 freeze-thaw cycles
    图10 试件CSW2CBF0.15BMF0.3冻融循环前后的微观结构Fig.10 Microstructure of specimen CSW2CBF0.15BMF0.3 before and after freeze-thaw cycles
    表 7 双掺短切玄武岩纤维和玄武岩纤维束混凝土的配合比Table 7 Mix proportions of concretes with chopped basalt fibers and basalt macro-fibers
    参考文献
    [1] NARAGANTI S R. Durability study of hybrid fiber reinforced concrete[J]. International Journal of Engineering and Technology Innovation, 2021, 11(1):59-69.
    [2] ZHANG P, LI Q F, CHEN Y Z, et al. Durability of steel fiber-reinforced concrete containing SiO2 nano-particles[J]. Materials, 2019, 12(13):2184.
    [3] CHIADIGHIKAOBI P C, ALARAZA H, IBEH N U, et al. Durability assessment of basalt fiber polymer as reinforcement to expanded clay concrete in harsh environment[J]. Cogent Engineering, 2021, 8(1):1918855.
    [4] 苏丽,牛荻涛,黄大观,等. 海洋环境中玄武岩/聚丙烯纤维增强混凝土氯离子扩散性能[J]. 建筑材料学报,2022,25(1):44-53.SHU Li, NIU Ditao, HUANG Daguan, et al. Chloride diffusion performance of basalt/polypropylene fiber reinforced concrete in marine environment[J]. Journal of Building Materials, 2022,25(1):44-53. (in Chinese)
    [5] 赵燕茹,宋博,王磊,等. 冻融循环作用后玄武岩纤维混凝土的断裂性能[J]. 建筑材料学报,2019,22(4):575-583.ZHAO Yanru, SONG Bo, WANG Lei, et al. Fracture properties of basalt fiber reinforced concrete after freeze-thaw cycles[J]. Journal of Building Materials, 2019,22(4):575-583. (in Chinese)
    [6] 吴倩云,马芹永.冻融循环作用下BSFC的抗冻性及损伤模型[J]. 建筑材料学报,2021,24(6):1169-1178.WU Qianyun,MA Qinyong. Frost resistance and damage model of BSFC under freeze-thaw cycles[J]. Journal of Building Materials, 2021, 24(6):1169-1178. (in Chinese)
    [7] ZHOU H, JIA B, HUANG H, et al. Experimental study on basic mechanical properties of basalt fiber reinforced concrete[J]. Materials, 2020, 13(6):1362.
    [8] 李趁趁, 胡婧, 元成方. 纤维/高强混凝土抗冻性能试验[J].复合材料学报, 2019, 36(8):1977-1983.LI Chenchen,HU Jing,YUAN Chengfang. Experimental study on the freezing resistance of fiber reinforced high strength concrete[J]. Acta Materiae Compositae Sinica, 2019, 36(8):1977-1983. (in Chinese)
    [9] NIU D T, SU L, YANG L, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete[J]. Construction and Building Materials, 2020, 237:117628.
    [10] LI Y, SHEN A Q, WU H. Fractal dimension of basalt fiber reinforced concrete(BFRC) and its correlations to pore structure, strength and shrinkage[J]. Materials, 2020, 13(14):e3238.
    [11] WANG D H, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197:464-473.
    [12] BRANSTON J, DAS S, KENNO S Y, et al. Mechanical behaviour of basalt fibre reinforced concrete[J]. Construction and Building Materials, 2016, 124:878-886.
    [13] 刘路路. 玄武岩纤维束混凝土力学性能试验研究与数值模拟[D]. 郑州:郑州大学, 2020.LIU Lulu. Experimental study and numerical simulation of mechanical properties of twisted basalt fiber bundle reinforced concrete[D]. Zhengzhou:Zhengzhou University, 2020. (in Chinese)
    [14] IYER P, KENNO S Y, DAS S. Performance of fiber-reinforced concrete made with basalt-bundled fibers[J]. Advances in Civil Engineering Materials, 2016, 5(1):107-123.
    [15] JIANG K D, WANG X, CHEN Z Y, et al. Effect of constituent content on mechanical behaviors of ultra-high performance seawater sea-sand concrete[J]. Construction and Building Materials, 2022, 351:128952.
    [16] XIA D T, YU S T, YU J L, et al. Damage characteristics of hybrid fiber reinforced concrete under the freeze-thaw cycles and compound-salt attack[J]. Case Studies in Construction Materials, 2023, 18:e01814.
    [17] 谢超鹏. 多尺度纤维水泥基复合材料断裂性能研究[D].大连:大连理工大学,2021.XIE Chaopeng. Fracture properties of multi-scale fiber reinforced cementitious composites[D]. Dalian:Dalian University of Technology, 2021. (in Chinese)
    [18] AFROUGHSABET V, BIOLZI L, OZBAKKALOGLU T. High-performance fiber-reinforced concrete:A review[J]. Journal of Materials Science, 2016, 51(14):6517-6551.
    [19] 张绍奇, 郭荣鑫. 工业副产石膏制备半水硫酸钙晶须的研究现状[J]. 硅酸盐通报, 2020, 39(11):3528-3534.ZHANG Shaoqi, GUO Rongxin. Research status of preparation of calcium sulfate hemihydrate whisker from industrial byproduct gypsum[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11):3528-3534. (in Chinese)
    [20] 丁晓.硫酸钙晶须混凝土力学性能及弯曲荷载作用下碳化和氯离子渗透性能研究[D]. 北京:北京交通大学, 2019.DING Xiao. Mechanical properties of calcium sulfate whisker concrete and carbonization under bending load and chloride ion permeability performance[D]. Beijing:Beijing Jiaotong University, 2019. (in Chinese).
    [21] 李趁趁,张文彬,张普,等. 硫酸钙晶须-玄武岩纤维混凝土抗氯离子渗透性能试验[J]. 工业建筑, 2022, 52(9):48-52.LI Chenchen,ZHANG Wenbin,ZHANG Pu,et al. Experimental research on chloride penetration resistance of calcium sulfate whisker and basalt fiber concrete[J]. Industrial Construction, 2022, 52(9):48-52. (in Chinese)
    [22] 张冬梅,耿欧,赵园园. 硫酸钙晶须对再生混凝土耐久性能的影响研究[J]. 混凝土, 2017(2):21-23, 27.ZHANG Dongmei, GENG Ou, ZHAO Yuanyuan. Study on the effects of calcium sulfate whisker on durability of recycled concrete[J]. Concrete, 2017(2):21-23, 27. (in Chinese)
    [23] 胡婧. 纤维高强混凝土耐久性试验研究[D]. 郑州:郑州大学, 2018.HU Jing. Experimental study on durability of fiber reinforced high strength concrete[D]. Zhengzhou:Zhengzhou University, 2018. (in Chinese)
    [24] POWERS T C, HELMUTH R A. Theory of volume changes in hardened portland cement paste during freezing[J]. Highway Research Board Proceedings, 1953, 32:285-297.
    [25] 周大卫,刘娟红, 段品佳, 等. 混凝土超低温冻融循环损伤演化规律和机理[J]. 建筑材料学报, 2022, 25(5):490-497.ZHOU Dawei, LIU Juanhong, DUAN Pinjia, et al. Damage evolution law and mechanism of concrete under cryogenic freeze-thaw cycles[J]. Journal of Building Materials, 2022, 25(5):490-497. (in Chinese)
    [26] 孙武斌. 晶须增强混凝土抗冻性能及孔隙结构特性试验研究[J]. 新型建筑材料, 2020, 47(7):58-60.SUN Wubin. Experimental study on frost resistance and pore structure characteristics of whisker reinforced concrete[J]. New Building Materials, 2020, 47(7):58-60. (in Chinese)
    [27] 王道正, 何玉鑫. 石膏晶须对水泥基复合材料性能和结构影响研究[J]. 无机盐工业, 2015, 47(8):65-68, 72.WANG Daozheng, HE Yuxin. Study on effect of gypsum whisker on properties and structure of cement composite material[J]. Inorganic Chemicals Industry, 2015, 47(8):65-68, 72. (in Chinese)
    [28] 李玉根. 毛乌素沙地风积砂混凝土力学特性及冻融盐蚀劣化机理研究[D]. 西安:西安科技大学, 2021.LI Yugen. Research on mechanical properties and deterioration mechanism of aeolian sand concrete under freeze-thaw and salt corrosion environment in Mu Us sandy land[D]. Xi’an:Xi’an University of Science and Technology, 2021. (in Chinese)
    [29] 施惠生, 郭晓潞, 刘红岩. 脱硫石膏对矿渣混凝土抗渗透性能的影响[J]. 同济大学学报(自然科学版), 2009, 37(5):656-659.SHI Huisheng,GUO Xiaolu,LIU Hongyan. Influence of flue gas desulphurization gypsum on resistance of permeability of slag concrete[J]. Journal of Tongji University(Natural Science), 2009, 37(5):656-659. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李趁趁,马娇,张普,张冬,邵景干.混杂纤维/束高强混凝土的抗冻性[J].建筑材料学报,2023,26(10):1072-1081

复制
分享
文章指标
  • 点击次数:181
  • 下载次数: 528
  • HTML阅读次数: 36
  • 引用次数: 0
历史
  • 收稿日期:2022-12-12
  • 最后修改日期:2023-02-17
  • 在线发布日期: 2023-11-14
文章二维码