PFOTES对水泥基材料防覆冰性能的影响及机理
作者:
作者单位:

1.同济大学 先进土木工程材料教育部重点实验室,上海 201804;2.同济大学 材料科学与工程学院,上海 201804;3.同济大学 工程结构服役性能演化与控制教育部重点实验室,上海 201804

作者简介:

陈楚欣(1997—),女,浙江嘉兴人,同济大学硕士生.E-mail:2030623@tongji.edu.cn

通讯作者:

刘斯凤(1970—),女,湖北江陵人,同济大学副教授,博士生导师,博士.E-mail:lsf@tongji.edu.cn

中图分类号:

TV42+1.5

基金项目:

国家自然科学基金资助项目(52179122)


Influence of PFOTES on Anti-icing Performance of Cementitious Materials and Its Mechanism
Author:
  • CHEN Chuxin 1,2

    CHEN Chuxin

    Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education,Tongji University,Shanghai 201804,China;School of Materials Science and Engineering,Tongji University,Shanghai 201804,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Sifeng 1,2,3

    LIU Sifeng

    Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education,Tongji University,Shanghai 201804,China;School of Materials Science and Engineering,Tongji University,Shanghai 201804,China;Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University,Shanghai 201804,China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education,Tongji University,Shanghai 201804,China;2.School of Materials Science and Engineering,Tongji University,Shanghai 201804,China;3.Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University,Shanghai 201804,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    研究了十三氟辛基三乙氧基硅烷(PFOTES)对水泥基材料工作性能、防覆冰性能和微观性能的影响,并通过热重-差示扫描量热分析(TG-DSC)和X射线衍射(XRD)探究了水泥水化产物的化学组成及物相组成.结果表明:掺入PFOTES能延长水泥净浆的凝结时间;低PFOTES掺量对减小冰附着力与增大接触角的效果较为明显,随着PFOTES掺量的进一步提升,冰附着力与接触角都基本保持不变;掺入PFOTES后,改性砂浆的吸水率减小、抗压强度降低、孔隙率增大;微观测试证明,PFOTES可以延缓水泥水化,但并未生成新的水化产物.

    Abstract:

    Influences of perfluorooctyltriethoxysilane(PFOTES) on the workability, anti-icing performance and microscopic properties of cementitious materials were studied.The chemical composition and physical phases of the cement hydration products were also investigated by thermogravimetric-differential scanning calorimeter(TG-DSC) and X-ray diffractometer(XRD). The results show that the incorporation of PFOTES can prolong the setting time of cement paste. The impacts of low PFOTES content to the reduction of ice adhesion and increase of contact angle are more significant, and both ice adhesion and contact angle remain basically the same with further increase of PFOTES content. With PFOTES, the water absorption of the modified mortar reduces, the compressive strength decreases and the porosity increases. It is proved by microscopic tests that PFOTES delays the hydration of cement but does not produce new hydration products.

    图1 PFOTES的分子结构式Fig.1 Molecular structure formula of PFOTES
    图2 冰附着力测试装置Fig.2 Ice adhesion test benches
    图3 不同PFOTES掺量下水泥净浆的凝结时间Fig.3 Setting time of cement pastes with different PFOTES contents
    图4 不同PFOTES掺量下砂浆表面的冰附着力Fig.4 Ice adhesion on mortar surfaces with different PFOTES contents
    图5 不同PFOTES掺量下水泥净浆的表面接触角Fig.5 Contact angles of cement pastes with different PFOTES contents
    图6 PFOTES与水泥颗粒的反应Fig.6 Reaction of PFOTES with cement particles
    图7 不同PFOTES掺量下砂浆的吸水率Fig.7 Water absorption of mortars with different PFOTES contents
    图8 不同PFOTES掺量下水泥砂浆的力学性能Fig.8 Mechanical properties of mortars with different PFOTES contents
    图9 养护28 d后PFOTES改性水泥砂浆的孔结构分析Fig.9 Pore structure analysis of PFOTES modified cement mortars at 28 d
    图10 不同PFOTES掺量下水泥净浆的XRD图谱Fig.10 XRD patterns of cement pastes with different PFOTES contents
    图11 不同PFOTES掺量下水泥净浆的TG-DSC曲线Fig.11 TG-DSC curves of cement pastes with different PFOTES contents
    图12 不同PFOTES掺量下水泥净浆的CH含量Fig.12 CH content of cement pastes with different PFOTES contents
    表 2 不同PFOTES掺量下水泥净浆的黏附能Table 2 Adhesion energy of cement pastes with different PFOTES contents
    表 1 水泥的化学组成Table 1 Chemical composition of cement
    参考文献
    [1] 周爱山, 刘斌. 黄壁庄水库冰雍危害及防治措施[J]. 大坝与安全, 2019, 5(5):5-8.ZHOU Aishan, LIU Bin. Hazards of ice jam and countermeasures for Huangbizhuang reservoir[J]. Dam & Safety, 2019, 5(5):5-8.(in Chinese)
    [2] 韩红卫, 张帅, 汪恩良, 等. 憎水涂层混凝土冰附着强度试验研究及应用性能分析[J]. 建筑材料学报, 2020, 23(6):1350-1356.HAN Hongwei, ZHANG Shuai, WANG Enliang, et al. Experimental study on ice adhesion strength on hydrophobic coated concrete and analysis of application performance[J]. Journal of Building Materials, 2020, 23(6):1350-1356.(in Chinese)
    [3] 李超仪, 宋世杰, 蔡猛, 等. 配电网线路防结冰涂层构筑及其性能评价[J]. 中国表面工程, 2021, 34(3):66-74.LI Chaoyi, SONG Shijie, CAI Meng, et al. Construction and analysis of anti-icing coating for distribution lines[J]. China Surface Engineering, 2021, 34(3):66-74.(in Chinese)
    [4] HU Q, YANG H, JIANG X L, et al. Investigation on one-step preparation and anti-icing experiments of robust super-hydrophobic surface on wind turbine blades[J]. Cold Regions Science and Technology, 2022, 195:103484.
    [5] SHEN C, ZHU Y Q, SHI W N, et al. Mechanically stable superhydrophobic surface on cement-based materials[J]. Chemical Physics, 2020, 538:244-250.
    [6] 高英力, 李学坤, 代凯明, 等. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价[J]. 材料导报, 2017, 31(14):132-137.GAO Yingli, LI Xuekun, DAI Kaiming, et al. Anti-icing technology and effectiveness evaluation of super-hydrophobic bionic cement concrete pavement[J]. Materials Reports, 2017, 31(14):132-137.(in Chinese)
    [7] 王宗鹏. 超疏水涂层对混凝土抗冻性及防冰性影响研究[D]. 哈尔滨:哈尔滨工业大学, 2015.WANG Zongpeng. Effect of superhydrophobic coatings on the frost resistance of and anti-icing properties of concrete[D]. Harbin:Harbin Institute of Technology, 2015.(in Chinese)
    [8] YIN B, WU C, HOU D S, et al. Research and application progress of nano-modified coating in improving the durability of cement-based materials[J]. Progress in Organic Coatings, 2021, 161:106529.
    [9] LI F P, LIU J S. An experimental investigation of hydration mechanism of cement with silicane[J]. Construction and Building Materials, 2018, 166:684-693.
    [10] 王海良, 李懿祯, 荣辉, 等. 有机硅防护剂对铝酸盐水泥砂浆防护性能的影响[J]. 建筑材料学报, 2019, 22(4):516-522.WANG Hailiang, LI Yizhen, RONG Hui, et al. Effect on protective performance of organosilicone protective agent for aluminate cement mortar[J]. Journal of Building Materials, 2019, 22(4):516-522.(in Chinese)
    [11] 高英力, 何倍, 蒋正武, 等. 超疏水改性自发光水泥基材料的性能与微结构[J]. 建筑材料学报, 2020, 23(1):192-199,209.GAO Yingli, HE Bei, JIANG Zhengwu, et al. Properties and mico-structure of super-hydrophobic modified self-luminous cement-based materials[J]. Journal of Building Materials, 2020, 23(1):192-199,209.(in Chinese)
    [12] LI Y Z, LI L, WAN D, et al. Preparation and evaluation of a fluorinated nano-silica superhydrophobic coating for cement pavement [J]. Construction and Building Materials, 2022, 360:129478.
    [13] 唐珊. 表面特性对冰粘附强度影响的研究[D]. 广州:广州大学, 2014.TANG Shan. Research on the effects of surface properties on ice adhesion strength[D]. Guangzhou:Guangzhou University, 2014.(in Chinese)
    [14] 孙瑜, 李立寒, 孙艳娜. 沥青表面能试验方法与试验条件[J]. 建筑材料学报, 2017, 20(3):489-494.SUN Yu, LI Lihan, SUN Yanna. Test method and test condition of asphalt surface energy[J]. Journal of Building Materials, 2017, 20(3):489-494.(in Chinese)
    [15] 徐开俊, 王险峰. 物理化学[M]. 北京:中国医药科技出版社, 2009:255.XU Kaijun, WANG Xianfeng. Physical chemistry[M]. Beijing:China Medical Science Press, 2009:255.
    [16] XIA Y, LIU M H, ZHAO Y D, et al. Hydration mechanism and phase assemblage of blended cement with iron-rich sewage sludge ash[J]. Journal of Building Engineering, 2023, 63:105579.
    [17] WANG F J, LEI S, OU J F, et al. Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar[J]. Applied Surface Science, 2020, 507:145016.
    [18] YE N, CHEN Y, YANG J K, et al. Transformations of Na, Al, Si and Fe species in red mud during synthesis of one-part geopolymers[J]. Cement and Concrete Research, 2017, 101:123-130.
    [19] 王智鑫, 梅军鹏, 廖宜顺, 等. 纳米SiO2与VAE复合改性水泥基材料的耐久性能 [J]. 建筑材料学报, 2023, 26(6):687-696.WANG Zhixin, MEI Junpeng, LIAO Yishun, et al. Durability of cement-based materials with nano SiO2 and VAE composite modification[J]. Journal of Building Materials, 2023, 26(6):687-696.
    [20] YANG J X, SHE W, ZUO W Q, et al. Rational application of nano-SiO2 in cement paste incorporated with silane:Counterbalancing and synergistic effects[J]. Cement and Concrete Composites, 2021, 118:351-361.
    [21] XIE M J, ZHONG Y J, LI Z, et al. Study on alkylsilane-incorporated cement composites:Hydration mechanism and mechanical properties effects[J]. Cement and Concrete Composites, 2021, 122:104161.
    相似文献
    引证文献
引用本文

陈楚欣,刘斯凤.PFOTES对水泥基材料防覆冰性能的影响及机理[J].建筑材料学报,2023,26(9):963-969

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-08
  • 最后修改日期:2023-03-02
  • 在线发布日期: 2023-10-10
文章二维码