阳离子对乳化沥青稳定性影响的分子模拟
作者:
作者单位:

福州大学 土木工程学院, 福建 福州 350108

作者简介:

袁 燕(1974—),女,山东曹县人,福州大学副教授,硕士生导师,博士. E-mail: yuanyan@fzu.edu.cn

通讯作者:

袁 燕(1974—),女,山东曹县人,福州大学副教授,硕士生导师,博士. E-mail: yuanyan@fzu.edu.cn

中图分类号:

U416

基金项目:

国家自然科学基金资助项目(52278446)


Molecular Simulation of the Effect of Cations on Stability of Emulsified Asphalt
Author:
Affiliation:

School of Civil Engineering, Fuzhou University, Fuzhou 350108, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于分子动力学,建立了无盐及含盐乳化沥青体系模型,研究了金属阳离子对十二烷基硫酸钠(SDS)阴离子乳化沥青稳定性的影响,并通过对比Ca2+/Mg2+加入前后沥青乳液中相对浓度分布、乳化剂分子倾角和各界面相之间的相互作用能,分析了乳化沥青体系的稳定性.结果表明:相较于无盐乳化沥青体系,Ca2+/Mg2+的加入降低了界面膜的吸附能力,减少了沥青相与水相的结合能,导致乳化沥青体系不稳定;分子模拟的计算结果与试验结论相符,验证了模型的正确性.

    Abstract:

    Based on molecular dynamics, the models of emulsified asphalt system without salt and with salt were established, and the effect of metal cations on the stability of sodium dodecyl sulfate (SDS) anionic emulsified asphalt was studied. The effect of Ca2+/Mg2+ on the stability of emulsified asphalt systems was analyzed by the relative concentration distribution, the molecular inclination of the emulsifier and the interaction energy between the facets of the emulsions. The results show that compared with the system without salt, the addition of Ca2+/Mg2+in the salt-containing system would reduce the adsorption capacity of the interfacial film, and the binding energy between the asphalt phase and the aqueous phase, lead to the instability of the emulsified asphalt system. The calculated results of molecular simulation are consistent with the experimental conclusions, verifying the correctness of the model.

    表 2 含不同盐离子下“沥青-乳化剂分子-水-乳化剂-沥青”体系的相互作用能Table 2 Interaction energy of “asphalt-emulsifier molecule-water-emulsifier-asphalt” system with different salt ions
    图1 基质沥青平衡模型Fig.1 Base asphalt balance model
    图2 含Ca2+的乳化沥青分子模型Fig.2 Molecular model of emulsified asphalt with Ca2+
    图3 SDS乳化沥青模型在不同水环境下的平衡结构图Fig.3 Equilibrium structure of SDS emulsified asphalt in different water environments
    图4 SDS乳化沥青在不同水环境下的相对浓度分布Fig.4 Relative concentration distribution of SDS emulsified asphalt in different water environments
    图5 SDS分子中S原子与C原子之间的倾角示意图Fig.5 Sketch diagram of inclination angle between S atom and C atom of SDS molecule
    图6 SDS乳化剂分子相对于Z轴方向倾角的概率分布图Fig.6 Probability distribution of inclination angle of SDS emulsifier molecule relative to Z-axis
    图7 表面活性剂、金属阳离子与水分子的径向分布函数Fig.7 Radial distribution function of surfactants, metal cations and water molecules
    表 1 沥青分子模型的基本性质Table 1 basic properties of asphalt molecular model
    参考文献
    [1] 胡富贵, 田小革, 胡宏立, 等. SBR胶乳掺量对改性乳化沥青性能的影响[J]. 建筑材料学报, 2021, 24(4):895-900.HU Fugui, TIAN Xiaoge, HU Hongli, et al. Effect of SBR latex content on properties of modified emulsified asphalt[J]. Journal of Building Materials, 2021, 24(4):895-900. (in Chinese)
    [2] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115(1):347-356.
    [3] 范维玉, 赵品晖, 康剑翘, 等. 分子模拟技术在乳化沥青研究中的应用[J]. 中国石油大学学报(自然科学版), 2014, 38(6):179-185.FANG Weiyu, ZHAO Pinhui, KANG Jianqiao, et al. Application of molecular simulation techniques in the study of emulsified asphalt[J]. Journal of China University of Petroleum (Natural Science), 2014, 38(6):179-185. (in Chinese)
    [4] 徐静, 洪锦祥, 刘加平, 等. 阳离子对阴离子型乳化沥青储存稳定性的影响[J]. 建筑材料学报, 2013, 16(5):824-828.XU Jing, HONG Jinxiang, LIU Jiaping, et al. Effect of cations on the storage stability of anionic emulsified asphalt[J]. Journal of Building Materials, 16(5):824-828. (in Chinese)
    [5] 潘玲, 张晋铭, 吕志田, 等. 基于分子动力学两集料间沥青的拉伸黏附机理[J]. 建筑材料学报, 2021, 24(5):1054-1059.PANG Ling, ZHANG Jinming, Zhitian LÜ, et al. Tensile adhesion mechanism of asphalt between two aggregates based on molecular dynamics[J]. Journal of Building Materials, 2021, 24(5):1054-1059. (in Chinese)
    [6] LESUEUR D. The colloidal structure of bitumen:Consequences on the rheology and on the mechanisms of bitumen modification[J]. Advances in Colloid and Interface Science, 2009, 145(1/2):42-82.
    [7] ZHANG L J, GREENFIELD M L. Analyzing properties of model asphalts using molecular simulation[J]. Energy and Fuels, 2007, 21(3):1712-1716.
    [8] XU G J, WANG H. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188(15):1-10.
    [9] WU M, XU G J, LUAN Y C, et al. Molecular dynamics simulation on cohesion and adhesion properties of the emulsified cold recycled mixtures[J]. Construction and Building Materials, 2022, 333:127403.
    [10] HU X Y, LI Y, HE X J, et al. Structure-behavior-property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches[J]. Journal of Physical Chemistry B, 2012, 116(1):160-167.
    [11] ZHAO T T, XU G Y, YUAN S L, et al. Molecular dynamics study of alkyl benzene sulfonate at air/water interface:Effect of inorganic salts[J]. Journal of Physical Chemistry B, 2010, 114(15):5025-5033.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁燕,陈宏宇,王叶飞,徐松,薛斌.阳离子对乳化沥青稳定性影响的分子模拟[J].建筑材料学报,2023,26(10):1137-1142

复制
分享
文章指标
  • 点击次数:213
  • 下载次数: 555
  • HTML阅读次数: 24
  • 引用次数: 0
历史
  • 收稿日期:2022-12-02
  • 最后修改日期:2023-02-16
  • 在线发布日期: 2023-11-14
文章二维码