考虑多尺度非均质性的混凝土传输性能预测模型
作者:
作者单位:

1.上海交通大学 海洋工程国家重点实验室,上海 200240;2.上海市公共建筑和基础设施数字化运维重点实验室,上海 200240

作者简介:

童良玉(1999—),女,安徽六安人,上海交通大学博士生. E-mail: tongly3@sjtu.edu.cn

通讯作者:

刘清风(1986—),男,辽宁大连人,上海交通大学教授,博士生导师,博士. E-mail: liuqf@sjtu.edu.cn

中图分类号:

TU528.01

基金项目:

国家优秀青年科学基金资助项目(52222805);上海市自然科学基金资助项目(22ZR1431400);上海交通大学深蓝计划项目(SL2021MS016)


Modelling of Concrete Transport Property by Considering Multi-scale Heterogeneous Characteristics
Author:
Affiliation:

1.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2.Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai 200240, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以混凝土中离子传输性能的预测为例,基于微观到宏观的代表体积单元,分析了多尺度非均质性对传输性能预测的影响,建立了混凝土多尺度传输性能预测模型.相较于传统多尺度模型,本模型在微观尺度上考虑了随水泥水化程度变化的物质组成与净浆层级离子扩散系数的关系,在细观和宏观尺度上分析了粗细骨料界面过渡区、不规则骨料形状和多离子耦合效应对混凝土层级传输性能的影响.选取氯离子扩散系数、侵蚀深度为验证指标,通过对比各尺度下的模型预测值和试验值,验证了多尺度模型的可靠性.基于此模型,各尺度下的物质传输规律可得到深入探讨和高效印证.本研究也为离子、水分、气体等物质在混凝土中的传输性能预测提供了一个新的多尺度研究框架.

    Abstract:

    A multi-scale model for concrete transport property prediction is developed by electing representative elements from micro to macro scale. Taking ionic diffusivity prediction as an example, the model comprehensively analyses the influence of inhomogeneity on the transport properties at different levels. Compared with the traditional model, new proposed model not only considers the influence of the hydration process at the microscopic scale, but also further analyses the influence of interfacial transition zones, aggregate shapes and the multi-species ions interaction at the mesoscopic and macroscopic scales. The paper verifies the reliability of the model at each scale by comparing the predicted and experimental results of chloride diffusivities in concrete. Based on the proposed model, transport properties at different scales can be comprehensively revealed and analyzed. The present work also hopes to provide a novel multi-scale framework to predict the transport mechanism of concrete.

    表 3 多离子传输模型的边界和初始条件Table 3 Boundary and initial conditions of multi-species ions transport model
    图1 混凝土内部组分非均质性的多尺度分析Fig.1 Multi-scale analysis of the heterogeneous characteristic in concrete
    图2 净浆均质化过程示意图Fig.2 Homogenization process of bulk cement paste
    图3 复合球体模型示意图Fig.3 Description of multi-coated composite sphere
    图4 砂浆均质化过程示意图Fig.4 Homogenization process of mortar scale
    图5 混凝土层级有限元建模Fig.5 Finite element model of concrete level
    图6 水泥净浆中氯离子扩散系数预测值与试验值对比Fig.6 Comparation between predicted and experimental chloride diffusivity in bulk cement pastes
    图7 混凝土中氯离子侵蚀深度预测值与试验值对比Fig.7 Comparison between predicted and experimental chloride penetration depth in concretes
    图8 水灰比和水化程度对水泥浆体中物质组分体积分数的影响Fig.8 Influence of water-cement ratio and hydration degree on volume fraction of different hydration products
    图9 不同水灰比下考虑和不考虑多离子耦合效应时混凝土中氯离子侵蚀深度的预测值Fig.9 Predicted chloride penetration depth under different water-cement ratios with and without multi-species ions effect
    图10 混凝土内部电势的分布Fig.10 Distribution of electrostatic potential in concrete
    参考文献
    [1] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1):69-77.ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete:A review[J]. Materials Reports, 2022, 36(1):69-77. (in Chinese)
    [2] 姜文镪, 刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报, 2020, 48(2):258-272.JIANG Wenqiang, LIU Qingfeng. Chloride transport in concrete subjected to freeze-thaw cycles — A short review[J]. Journal of the Chinese Ceramic Society, 2020, 48(2):258-272. (in Chinese)
    [3] ASHRAF M, IQBAL M F, RAUF M, et al. Developing a sustainable concrete incorporating bentonite clay and silica fume:Mechanical and durability performance[J]. Journal of Cleaner Production, 2022, 337:130315.
    [4] MENG Z Z, LIU Q F, XIA J, et al. Mechanical-transport-chemical modeling of electrochemical repair methods for corrosion-induced cracking in marine concrete[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(14):1854-1874.
    [5] 蔡栋兴,毕文彦,管学茂.粗骨料对混凝土氯离子扩散影响的模拟与试验[J].建筑材料学报,2023,26(4):383-388.CAI Dongxing, BI Wenyan, GUAN Xuemao. Simulation and experiments of the effect of coarse aggregates on the diffusion of chloride ions in concrete[J]. Journal of Building Materials, 2023, 26(4):383-388. (in Chinese)
    [6] LIU Q F, SHEN X H, ŠAVIJA B, et al. Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete[J]. Cement and Concrete Research, 2023, 165:107072.
    [7] 周双喜, 韩震, 魏星, 等. 骨料含量和界面区体积对混凝土氯离子扩散性能的影响[J]. 建筑材料学报, 2018, 21(3):351-357.ZHOU Shuangxi, HAN Zhen, WEI Xing, et al. Influence of aggregate contents and volume of interfacial transition zone on chloride ion diffusion properties of concrete[J]. Journal of Building Materials, 2018, 21(3):351-357. (in Chinese)
    [8] CAI Y X, LIU Q F, MENG Z Z, et al. Influence of coarse aggregate settlement induced by vibration on long-term chloride transport in concrete:A numerical study[J]. Materials and Structures, 2022, 55(9):235.
    [9] 刘嘉涵, 徐世烺, 曾强. 基于多尺度细观力学方法计算水泥基材料的导热系数[J]. 建筑材料学报, 2018, 21(2):293-298.LIU Jiahan, XU Shilang, ZENG Qiang. An inverstigation of thermal conductivity of cement-based composites with multi-scale microschemical method[J]. Journal of Building Materials, 2018, 21(2):293-298. (in Chinese)
    [10] ACHOUR M, BIGNONNET F, BARTHÉLÉMY J F, et al. Multi-scale modeling of the chloride diffusivity and the elasticity of Portland cement paste[J]. Construction and Building Materials, 2020, 234:117-124.
    [11] XIONG Q X, TONG L Y, ZHANG Z D, et al. A new analytical method to predict permeability properties of cementitious mortars:The impacts of pore structure evolutions and relative humidity variations[J]. Cement and Concrete Composites, 2023, 137, 104912.
    [12] SHAFIKHANI M, CHIDIAC S E. A holistic model for cement paste and concrete chloride diffusion coefficient[J]. Cement and Concrete Research, 2020, 133:106049.
    [13] SUN G W, ZHANG Y S, SUN W, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete[J]. Construction and Building Materials, 2011, 25(10):3820-3831.
    [14] TONG L Y, QING X X, ZHANG M Z, et al. Multi-scale modelling and statistical analysis of heterogeneous characteristics effect on chloride transport properties in concrete[J]. Construction and Building Materials, 2023, 367:130096.
    [15] BOURISSAI M, MEFTAH F, BRUSSELLE-DUPEND N, et al. Evolution of the elastic properties of an oilwell cement paste at very early age under downhole conditions:Characterization and modelling[J]. Oil and Gas Science and Technology, 2013, 68(3):595-612.
    [16] LEE Y, KIM J K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model[J]. Computers and Structures, 2009, 87(17/18):1085-1101.
    [17] ZHENG J J, ZHANG C Y, WU Y F, et al. Random-walk algorithm for chloride diffusivity of concrete with aggregate shape effect[J]. Journal of Materials in Civil Engineering, 2016, 28(12):04016153.
    [18] 童良玉, 刘清风. 考虑时变孔隙结构的非饱和混凝土扩散性能预测模型[J]. 硅酸盐学报, 2023, 51(8):1950-1961.TONG Liangyu, LIU Qingfeng. Prediction model for diffusivity of unsaturated concrete by considering time-varying pore structure[J]. Journal of the Chinese Ceramic Society, 2023, 51(8):1950-1961. (in Chinese)
    [19] LIU Q F, HU Z, WANG X E, et al. Numerical study on cracking and its effect on chloride transport in concrete subjected to external load[J]. Construction and Building Materials, 2022, 325:126797.
    [20] LIU Q F, CAI Y X, PENG H, et al. A numerical study on chloride transport in alkali-activated fly ash/slag concretes[J]. Cement and Concrete Research, 2023, 165:107049.
    [21] TONG L Y, XIONG Q X, ZHANG Z, et al. A novel lattice model to predict chloride diffusion coefficient of unsaturated cementitious materials based on multi-typed pore structure characteristics[J]. Cement and Concrete Research, 2024, 175: 107351.
    [22] BERNARD O, ULM F J, LEMARCHAND E. A multiscale micromechanics-hydration model for the early age elastic properties of cement-based materials[J]. Cement and Concrete Research, 2003, 33(9):1293-1309.
    [23] MA H Y, HOU D S, LU Y Y, et al. Two-scale modeling of the capillary network in hydrated cement paste[J]. Construction and Building Materials, 2014, 64:11-21.
    [24] VENKOVIC N, SORELLI L, SUDRET B, et al. Uncertainty propagation of a multiscale poromechanics-hydration model for poroelastic properties of cement paste at early-age[J]. Probabilistic Engineering Mechanics, 2013, 32:5-20.
    [25] 童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2022, 39(11):5181-5191.TONG Liangyu, LIU Qingfeng. Multi-scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11):5181-5191. (in Chinese)
    [26] ULM F J, CONSTANTINIDES G. The nanogranular nature of C-S-H[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(1):64-90.
    [27] TENNIS P D, JENNINGS H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes[J]. Cement and Concrete Research, 2000, 30(6):855-863.
    [28] OŽBOLT J, ORŠANIĆ F, BALABANIĆ G, et al. Modeling damage in concrete caused by corrosion of reinforcement:Coupled 3D FE model[J]. International Journal of Fracture, 2012, 178(1/2):233-244.
    [29] TIMOTHY J J, MESCHKE G. Effective diffusivity of porous materials with microcracks:Self-similar mean-field homogenization and pixel finite element simulations[J]. Transport in Porous Media, 2018, 125(3):413-434.
    [30] DRIDI W. Analysis of effective diffusivity of cement based materials by multi-scale modelling[J]. Materials and Structures, 2012, 46(1/2):313-326.
    [31] LU P. Further studies on Mori-Tanaka models for thermal expansion coefficients of composites[J]. Polymer, 2013, 54(6):1691-1699.
    [32] HU J, STROEVEN P. Depercolation threshold of porosity in model cement:Approach by morphological evolution during hydration[J]. Cement and Concrete Composites, 2005, 27(1):19-25.
    [33] 贾立哲, 张英姿, 王开源, 等, 非饱和混凝土中氯离子传输机理[J]. 建筑材料学报, 2016, 19(1):45-52.JIA Lizhe, ZHANG Yingzi, WANG Kaiyuan, et al. Transport mechanism of chloride in nonsaturated concrete[J]. Journal of Building Materials, 2016, 19(1):45-52. (in Chinese)
    [34] 刘建华, 陈磊, 吴绍明, 等. 阳离子类型对粉煤灰混凝土氯离子扩散性能的影响[J]. 硅酸盐通报, 2022, 41(6):1920-1929.YANG Jianhua, CHEN Lei, WU Shaoming, et al. Effect of cation type on chloride diffusion properties of fly ash concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6):1920-1929. (in Chinese)
    [35] TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2):247-253.
    [36] 万小梅, 韩笑, 于琦, 等. 碱激发矿渣净浆对氯离子的固化作用[J]. 建筑材料学报, 2021, 24(5):952-960.WAN Xiaomei, HAN Xiao, YU Qi, et al. Solidification of chloride ions in alkali-activated slag paste[J]. Journal of Building Materials, 2021, 24(5):952-960. (in Chinese)
    [37] NGALA V T, PAGE C L, PARROTT L J, et al. Diffusion in cementitious materials:II. Further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes[J]. Cement and Concrete Research, 1995, 25(4):819-826.
    [38] NGALA V T, PAGE C L. Effects of carbonation on pore structure and diffusional properties of hydrated cement paste[J]. Cement and Concrete Research, 1997, 27(7):995-1007.
    [39] MACDONALD K A, NORTHWOOD D O. Experimental measurements of chloride ion diffusion rates using a two-compartment diffusion cell:Effects of material and test variables[J]. Cement and Concrete Research, 1995, 25(7):1407-1416.
    [40] PRINCIGALLO A. Cálculo del transporte de cloruros en la pasta de cemento[J]. Materiales de Construcción, 2012, 62(306):151-161.
    [41] CHEN X D, YU A P, LIU G Y, et al. A multi-phase mesoscopic simulation model for the diffusion of chloride in concrete under freeze-thaw cycles[J]. Construction and Building Materials, 2020, 265:120223.
    [42] DE S K, MUKHERJEE A. A multiscale model including the effect of pores, aggregates and their interfaces for moisture diffusion in concrete[J]. Cement and Concrete Composites, 2020, 111:103595.
    [43] SONG Z J, JIANG L H, CHU H Q, et al. Modeling of chloride diffusion in concrete immersed in CaCl2 and NaCl solutions with account of multi-phase reactions and ionic interactions[J]. Construction and Building Materials, 2014, 66:1-9.
    [44] JIANG W Q, SHEN X H, XIA J, et al. A numerical study on chloride diffusion in freeze-thaw affected concrete[J]. Construction and Building Materials, 2018, 179:553-565.
    [45] YANG C C, CHO S W, WANG L C. The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials[J]. Materials Chemistry and Physics, 2006, 100(2/3):203-210.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

童良玉,刘清风.考虑多尺度非均质性的混凝土传输性能预测模型[J].建筑材料学报,2023,26(10):1062-1071

复制
分享
文章指标
  • 点击次数:197
  • 下载次数: 464
  • HTML阅读次数: 12
  • 引用次数: 0
历史
  • 收稿日期:2022-11-04
  • 最后修改日期:2022-12-14
  • 在线发布日期: 2023-11-14
文章二维码