机械-水热联合法制备高活性硅酸二钙
作者:
作者单位:

1.同济大学 材料科学与工程学院,上海 201804;2.同济大学 先进土木工程材料教育部重点实验室,上海 201804

作者简介:

杨正宏(1967—),男,安徽六安人,同济大学教授,博士生导师,博士. E-mail:tjzhy92037@163.com

通讯作者:

徐玲琳(1986—),女,江苏建湖人,同济大学副教授,博士生导师,博士. E-mail:xulinglin@126.com

中图分类号:

TU528

基金项目:

国家自然科学基金资助项目(52172022);同济大学大型仪器开放测试基金项目(2022GX010)


Preparation of Highly Reactive Dicalcium Silicate by Mechano- Hydrothermal Processing
Author:
Affiliation:

1.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;2.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以稻壳灰和Ca(OH)2为原料,B2O3为稳定剂,通过机械-水热联合法制备了高活性硅酸二钙(C2S),研究了预处理工艺对稻壳灰活性以及烧成制度对硅酸二钙活性的影响.结果表明:稻壳灰经1%稀硫酸溶液预处理2.5 h后煅烧,可使稻壳灰活性增高,有利于提高水热合成的效率;分段煅烧和掺入0.5%的B2O3促进了β-C2S的形成,并提升了其早期水化活性,有利于强度发展;按钙硅比为2配制的物料经球磨2.0 h、水热4.0 h后,先在500 ℃下预烧1.0 h,再升温至600 ℃煅烧1.0 h,可得到高活性硅酸二钙,其水化7、28 d后的抗压强度分别为33.0 、41.1 MPa.

    Abstract:

    Highly reactive dicalcium silicate was prepared by mechano-hydrothermal processing using rice husk ash and Ca(OH)2 as raw materials, and B2O3 as stabilizer. The effects of pretreatment process on the activity of rice husk ash and calcination system were studied. The results show that the rice husk ash is highly activated by pretreating with 1% dilute sulfuric acid solution for 2.5 h and calcining, which favors to the efficiency improvement of hydrothermal synthesis. Both annealing and addition of 0.5% B2O3 contribute to the formation of β-C2S and enhance its early hydration activity, which is beneficial to the strength development. The optimum procedure is ball-milling for 2.0 h, then hydrothermal condition for 4.0 h, followed by preheating at 500 ℃ for 1.0 h, and finally calcining at 600 ℃ for 1.0 h. The compressive strength of highly reactive dicalcium silicate reaches 33.0 MPa and 41.1 MPa after 7 d and 28 d of curing, respectively.

    表 1 P600和R500的化学组成Table 1 Chemical compositions of P600 and R500
    表 2 样品的配合比Table 2 Mix proportions of samples
    图1 不同稻壳灰与Ca(OH)2反应3 d后水化产物的XRD谱图Fig.1 XRD patterns of hydration products from reaction of different rice husk ashes and Ca(OH)2 for 3 d
    图2 不同温度下煅烧所得稻壳灰与Ca(OH)2反应3 d水化产物的TG-DTG曲线Fig.2 TG-DTG patterns of hydration products from reaction of Ca(OH)2 and rice husk ash calcinated at different temperatures
    图3 样品的XRD图谱Fig.3 XRD patterns of samples
    图4 样品HPB水热产物经不同烧成制度所得硅酸二钙的XRD图谱Fig.4 XRD patterns of C2S from products of sample HPB
    图5 不同烧成制度所得硅酸二钙水化放热速率和累计放热曲线Fig.5 Rate of heat flow and cumulative heat of C2S obtained at different sintering regimes
    图6 水化时间为30 h内硅酸二钙水化产物的XRD图谱Fig.6 XRD patterns of C2S hydration products with of hydration time at 30 h
    图7 水化时间为7、28 d的硅酸二钙水化产物的XRD图谱Fig.7 XRD patterns of C2S hydration products with hydration time at 7 d and 28 d
    表 3 不同烧成制度所得硅酸二钙水化7、28 d后的抗压强度Table 3 7 d and 28 d compressive strength of C2S obtained at different sintering regimes
    参考文献
    [1] DAMTOFT J S, LUKASIK J, HERFORT D, et al. Sustainable development and climate change initiatives[J]. Cement and Concrete Research, 2008, 38(2):115-127.
    [2] 杨南如, 钟白茜. 活性β-C2S的研究[J]. 硅酸盐学报, 1982, 10(2):35-40.YANG Nanru, ZHONG Baiqian. A study on active β-C2S[J]. Journal of the Chinese Ceramic Society, 1982, 10(2):35-40. (in Chinese)
    [3] CHATTERJEE A K. High belite cements—Present status and future technological options:Part I[J]. Cement and Concrete Research, 1996, 26(8):1213-1225.
    [4] ROY D M, OYEFESOBI S O. Preparation of very reactive Ca2SiO4 powder[J]. Journal of the American Ceramic Society, 1977, 60(3/4):178-180.
    [5] CHATTERJEE A K. Future technological options:Part II[J]. Cement and Concrete Research, 1996, 26(8):1227-1237.
    [6] HONG S H, YOUNG J F. Hydration kinetics and phase stability of dicalcium silicate synthesized by the pechini process[J]. Journal of the American Ceramic Society, 1999, 82(7):1681-1686.
    [7] MI G, SAITO F, HANADA M. Mechanochemical synthesis of alite by room temperature grinding[J]. Inorganic Materials, 1996, 3(11):587-591.
    [8] BAKI V A, KE X, HEATH A, et al. The impact of mechanochemical activation on the physicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonite[J]. Cement and Concrete Research, 2022, 162:106962.
    [9] 朱明, 胡曙光, 杨文. 机械力化学作用对硅酸二钙晶体结构的影响[J]. 水泥工程, 2006(2):9-13.ZHU Ming, HU Shuguang, YANG Wen. Effect of mechanochemical action on crystal structure of dicalcium silicate [J]. Cement Engineering, 2006(2):9-13. (in Chinese)
    [10] 杨南如. 非传统胶凝材料化学[M]. 武汉:武汉理工大学出版社, 2018:338-339.YANG Nanru. Non-traditional cementitious materials chemistry[M]. Wuhan:Wuhan University of Technology Press, 2018:338-339. (in Chinese)
    [11] 杨南如. 水热合成β-C2S的研究进展[J]. 建筑材料学报, 2011, 14(2):5-14.YANG Nanru. Progress in study of β-C2S by hydrothermal processing[J]. Journal of Building Materials, 2011, 14(2):5-14. (in Chinese)
    [12] ISHIDA H, MABUCHI K, SASAKI K, et al. Low temperature synthesis of β-Ca2SiO4 from hillebrandite[J]. Journal of the American Ceramic Society, 2010, 75(9):2427-2432.
    [13] HARTMANN A, KHAKHUTOV M, BUHL J C. Hydrothermal synthesis of CSH-phases (tobermorite) under influence of Ca-formate[J]. Materials Research Bulletin, 2014, 51:389-396.
    [14] 兰浩然, 景镇子, 萧礼标, 等. 陶瓷废料水热固化技术在室内薄板材料上的应用[J]. 建筑材料学报, 2020, 23(4):882-888.LAN Haoran, JING Zhenzi, XIAO Libiao, et al. Application of ceramic waste hydrothermal curing technology on indoor sheet materials [J]. Journal of Building Materials, 2020, 23(4):882-888. (in Chinese)
    [15] LU J S, CONG X Q, LI Y D, et al. Scalable recycling of oyster shells into high purity calcite powders by the mechanochemical and hydrothermal treatments [J]. Journal of Cleaner Production, 2018, 172:1978-1985.
    [16] SKUBISZEWSKA-ZIEBA J, CHARMAS B, WANIAK-NOWICKA H. Hydrothermal and mechanochemical synthesis of crystalline CaCO3[J]. Absorption Science and Technology, 2017, 35(7/8):668-676.
    [17] 陆诗洋. 稻壳的预处理及煅烧条件对稻壳灰活性的影响研究[D]. 沈阳:沈阳化工大学, 2019.LU Shiyang. Effects of pretreatment and calcination conditions of rice husk on the activity of rice husk ash[D]. Shenyang:Shenyang University of Chemical Technology, 2019.(in Chinese)
    [18] MA B, LI X R, SHEN Y Y, et al. Enhancing the addition of fly ash from thermal power plants in activated high belite sulfoaluminate cement[J]. Construction and Building Materials, 2014, 52:261-266.
    [19] RAMACHANDRAN V, PAROLI R M, BEAUDOIN J J, et al. Handbook of thermal analysis of construction materials[M]. New York:Noyes Publications, 2003:111.
    [20] TAYLOR H F W. Cement chemistry[M]. London:Thomas Telford Publications, 1997:24.
    [21] RODRIGUES F A. Low-temperature synthesis of cements from rice husk ash[J]. Cement and Concrete Research, 2003, 33(10):1525-1529.
    [22] 杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉:武汉工业大学出版社, 2000:275.YANG Nanru, YUE Wenhai. Manual of atlas of inorganic nonmetallic materials[M]. Wuhan:Wuhan University of Technology Press, 2000:275. (in Chinese)
    [23] SINGH N B. Hydrothermal synthesis of β-dicalcium silicate (β-Ca2SiO4)[J]. Progress in Crystal Growth and Characterization of Materials, 2006, 52(1/2):77-83.
    [24] LIINK T, BELLMANN F, LUDWIG H M, et al. Reactivity and phase composition of Ca2SiO4 binders made by annealing of alpha-dicalcium silicate hydrate[J]. Cement and Concrete Research, 2015, 67:131-137.
    相似文献
    引证文献
引用本文

杨正宏,何翠兰,李祯,李博,徐玲琳.机械-水热联合法制备高活性硅酸二钙[J].建筑材料学报,2023,26(7):816-822

复制
分享
文章指标
  • 点击次数:163
  • 下载次数: 557
  • HTML阅读次数: 20
  • 引用次数: 0
历史
  • 收稿日期:2022-07-09
  • 最后修改日期:2022-09-08
  • 在线发布日期: 2023-09-15
文章二维码