冻融环境下活化煤矸石粉混凝土毛细吸水性能
作者:
作者单位:

1.西安科技大学 建筑与土木工程学院,陕西 西安 710054;2.西安建筑科技大学 土木工程学院,陕西 西安 710055

作者简介:

关 虓(1984—),男,陕西西安人,西安科技大学副教授,硕士生导师,博士.E-mail:guanxiao@xust.edu.cn

通讯作者:

关 虓(1984—),男,陕西西安人,西安科技大学副教授,硕士生导师,博士.E-mail:guanxiao@xust.edu.cn

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(51808443);陕西省自然科学基础研究计划青年项目(2019JQ-131)


Capillary Water Absorption Properties of Activated Coal Gangue Powder Concrete in Freeze-thaw Environment
Author:
Affiliation:

1.School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;2.School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    研究了冻融环境中不同掺量和水胶比条件下,活化煤矸石粉(ACGP)对混凝土毛细吸水性能的影响规律;同时结合非饱和毛细理论,建立了活化煤矸石粉混凝土(ACGPC)的相对含水量分布预测模型.结果表明:冻融作用使得ACGPC的累计吸水量及毛细吸水率逐渐增大,抗毛细吸水性能降低,水分侵入深度提高;当ACGP掺量相同时,ACGPC的抗毛细吸水性能随着水胶比的增加而降低;当水胶比一定时,随着ACGP掺量的增加,ACGPC的累计吸水量及毛细吸水率先降后升;ACGP可细化混凝土孔径,当ACGP掺量为20%时效果最为显著.

    Abstract:

    The effect of activated coal gangue powder (ACGP) on the capillary water absorption property of concrete under different contents and water-binder ratios in freeze-thaw environment was studied, and the prediction model of relative water content distribution of activated coal gangue powder concrete (ACGPC) was established based on unsaturated capillary theory. The results indicate that the freeze-thaw action gradually increases the cumulative water absorption and absorptivity of ACGPC gradually enhances, the capillary water absorption performance reduces and the water intrusion depth increases. With the same content of ACGP, the capillary water absorption resistance of ACGPC lowers with the increase of water-binder ratio. When the water-binder ratio is constant, the cumulative water absorption and capillary absorptivity of ACGPC reduces and then rises with the increase of ACGP, which refines the harmful pores and improves the pore size distribution in concrete at proper content of ACGP, with the most significant effect at 20%.

    表 2 ACGPC的配合比及基本性能Table 2 Mix proportions and basic performances of ACGPCs
    表 1 煤矸石的化学组成Table 1 Chemical composition of coal gangue w/%
    图1 ACGP及水泥的粒度分布曲线Fig.1 Granularity distribution curves of ACGP and cement
    图2 CGP和ACGP的XRD图谱Fig.2 XRD patterns of CGP and ACGP
    图3 冻融环境下ACGPC的质量损失率Fig.3 Mass loss rate of ACGPC in freeze-thaw environment
    图4 冻融环境下ACGPC的相对动弹性模量Fig.4 Relative dynamic elastic modulus of ACGPC in freeze-thaw environment
    图5 冻融环境下ACGPC的累计吸水量Fig.5 Cumulative water absorption of ACGPC in freeze-thaw environment
    图6 冻融环境下ACGPC的初始吸水率及二次吸水率Fig.6 Initial and secondary water absorption of ACGPC in freeze-thaw environment
    图7 S40C0组和S40C2组在不同冻融循环次数下的SEM照片Fig.7 SEM images of group S40C0 and S40C2 under different freeze-thaw cycles
    图8 S40C2组和S40C0组的孔径分布Fig.8 Pore diameter distribution of group S40C2 and S40C0
    图9 S40C2和S40C0组各孔径的孔隙率及孔径级配Fig.9 Porosity and pore size gradation of each pore size of group S40C2 and S40C0
    图10 S40C2组和S40C0组的相对含水量分布曲线Fig.10 Relative water content distribution curves of group S40C2 and S40C0
    参考文献
    [1] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展 [J]. 矿产保护与利用, 2021, 41(6):165-178.LI Zhen, XUE Jia, ZHU Zhanglei, et al. Research progress on comprehensive utilization of coal gangue [J]. Conservation and Utilization of Mineral Resources, 2021, 41(6):165-178. (in Chinese)
    [2] ZHOU S X, DONG J L, YU L H, et al. Effect of activated coal gangue in north china on the compressive strength and hydration process of cement [J]. Journal of Materials in Civil Engineering, 2019, 31(4):04019022.
    [3] 郭伟, 李东旭, 陈建华, 等. 热活化与机械力活化对煤矸石胶凝性的影响[J]. 建筑材料学报, 2011, 14(3):371-375.GUO Wei, LI Dongxu, CHEN Jianhua, et al. Effect of heat activated and mechanical force activated method on coal gangue cementing performance [J]. Journal of Building Materials, 2011, 14(3):371-375. (in Chinese)
    [4] GHASEMZADEH F, POUR-GHAZ M. Effect of damage on moisture transport in concrete [J]. Journal of Materials in Civil Engineering, 2015, 27(9):04014242.
    [5] 苏丽, 牛荻涛, 罗扬, 等. 粉煤灰珊瑚骨料混凝土内掺氯离子扩散和吸水性能 [J]. 建筑材料学报, 2021, 24(1):77-86,92.SU Li, NIU Ditao, LUO Yang, et al. Inner chloride ion diffusion and capillary water absorption properties of fly ash coral aggregate concrete [J]. Journal of Building Materials, 2021, 24(1):77-86,92. (in Chinese)
    [6] ZHAO H T, DING J, HUANG Y Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials [J]. Structural Concrete, 2019, 20(5):1750-1762.
    [7] GUAN X, CHEN J X, QIU J S, et al. Damage evaluation method based on ultrasound technique for gangue concrete under freezing-thawing cycles [J]. Construction and Building Materials, 2020, 246:118437.
    [8] 邱继生, 郑娟娟, 关虓, 等. 冻融环境下煤矸石混凝土毛细吸水性能 [J]. 建筑材料学报, 2017, 20(6):881-886.QIU Jisheng, ZHENG Juanjuan, GUAN Xiao, et al. Capillary water absorption properties of gangue concrete under freeze-thawing circumstance [J]. Journal of Building Materials, 2017, 20(6):881-886. (in Chinese)
    [9] ABDUL R H, CHAI H K, WONG H S. Near surface characteristics of concrete containing supplementary cementing materials [J]. Cement and Concrete Composites, 2004, 26(7):883-889.
    [10] MA H Q, ZHU H G, WU C, et al. Effect of shrinkage reducing admixture on drying shrinkage and durability of alkali-activated coal gangue-slag material [J]. Construction and Building Materials, 2021, 270:121372.
    [11] WANG Y Z, TAN Y, WANG Y C, et al. Mechanical properties and chloride permeability of green concrete mixed with fly ash and coal gangue [J]. Construction and Building Materials, 2020, 233:117166.
    [12] CHEN J X, GUAN X, ZHU M Y, et al. Mechanism on activation of coal gangue admixture [J]. Advances in Civil Engineering, 2021, 2021:5436482.
    [13] GUAN X, CHEN J X, ZHU M Y, et al. Performance of microwave-activated coal gangue powder as auxiliary cementitious material [J]. Journal of Materials Research and Technology, 2021, 14:2799-2811.
    [14] 丁莎, 陈霁溪, 关虓. 煤矸石活性激发及其胶砂力学性能试验研究 [J]. 混凝土与水泥制品, 2021(12):79-83.DING Sha, CHEN Jixi, GUAN Xiao. Experimental study on active excitation of coal gangue and mechanical properties of mortar [J]. China Concrete and Cement Products, 2021(12):79-83. (in Chinese)
    [15] 吴中伟. 混凝土科学技术近期发展方向的探讨 [J]. 硅酸盐学报, 1979(3):262-270.WU Zhongwei. An approach to the recent trends of concrete science and technology [J]. Journal of the Chinese Ceramic Society, 1979(3):262-270. (in Chinese)
    [16] QIU J S, ZHU M Y, ZHOU Y X, et al. Effect and mechanism of coal gangue concrete modification by fly ash [J]. Construction and Building Materials, 2021, 294:123563.
    [17] 薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究 [J]. 建筑材料学报, 2019, 22(2):199-205.XUE Huijun, SHEN Xiangdong, ZOU Chunxia, et al. Freeze-thaw pore evolution of aeolian sand concrete based on nuclear magnetic resonance [J]. Journal of Building Materials, 2019, 22(2):199-205. (in Chinese)
    [18] SHE A M, YAO W, YUAN W C. Evolution of distribution and content of water in cement paste by low field nuclear magnetic resonance [J]. Journal of Central South University of Technology, 2013, 20(4):1109-1114.
    [19] 王立成. 建筑材料吸水过程中毛细管系数与吸水率关系的理论分析 [J]. 水利学报, 2009, 40(9):1085-1090.WANG Licheng. Analytical relationship between capillary coefficient and sorptivity of building material [J]. Journal of Hydraulic Engineering, 2009, 40(9):1085-1090. (in Chinese)
    [20] LEECH C, LOCKINGTON D, DUX P. Unsaturated diffusivity functions for concrete derived from NMR images [J]. Materials and Structures, 2003, 36(6):413-418.
    [21] 鲍玖文, 李树国, 张鹏, 等. 轴压重复荷载作用后再生混凝土毛细吸水性能 [J]. 建筑材料学报, 2021, 24(1):71-76.BAO Jiuwen, LI Shuguo, ZHANG Peng, et al. Capillary water absorption of recycled aggregate concrete after repeated axial compressive loading [J]. Journal of Building Materials, 2021, 24(1):71-76. (in Chinese)
    相似文献
    引证文献
引用本文

关虓,张鹏鑫,邱继生,丁莎,龙行.冻融环境下活化煤矸石粉混凝土毛细吸水性能[J].建筑材料学报,2023,26(5):483-491

复制
分享
文章指标
  • 点击次数:235
  • 下载次数: 667
  • HTML阅读次数: 25
  • 引用次数: 0
历史
  • 收稿日期:2022-05-16
  • 最后修改日期:2022-06-26
  • 在线发布日期: 2023-06-08
文章二维码