固废基低钙固碳水泥熟料组成设计及烧成过程
作者:
作者单位:

湖南大学 土木工程学院,湖南 长沙 410082

作者简介:

王晓丽(1993—),女,山东潍坊人,湖南大学博士生. E-mail: wxl931220@hnu.edu.cn

通讯作者:

林忠财(1980—),男,马来西亚华裔,湖南大学教授,博士生导师,博士. E-mail: tcling@hnu.edu.cn

中图分类号:

TQ172.1

基金项目:

国家自然科学基金资助项目(52250710158)


Composition Design and Sintering Process of Solid Waste-Based Low-Calcium Carbon-Fixing Cement Clinker
Author:
Affiliation:

College of Civil Engineering, Hunan University, Changsha 410082, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以城市垃圾焚烧飞灰(MSWIFA)和焚烧底灰(BA)为原料,成功制备了一种以β型硅酸二钙(β-C2S)为主的低钙固碳水泥熟料.结果表明:熟料在1 150~1 250 ℃之间均可被烧结,且实际所需的n(Ca)/n(Si)值要高于理论设计值,即n(Ca)/n(Si)>2.6,否则容易过烧且易形成钙铝黄长石,不利于水泥强度的发展;n(Ca)/n(Si)值对水泥早期抗压强度和碳化程度的影响较大,总体来说抗压强度随着n(Ca)/n(Si)值的增加呈递减趋势,n(Ca)/n(Si)=2.8~3.2时水泥碳化养护2 d的抗压强度基本维持在50 MPa以上,甚至高达72 MPa;当n(Ca)/n(Si)值升至3.3~3.7时,水泥的抗压强度降至25~30 MPa,CaCO3生成量基本维持在12.00%左右;关于熟料各矿物的水化及碳化作用对其强度的贡献还需要进一步探究.

    Abstract:

    A low-calcium carbon-fixing cement clinker mainly composed of β-C2S was successfully manufactured using from municipal solid waste incineration fly ash and bottom ash. The results show that the clinker can be sintered at 1 150-1 250 ℃, and the actual n(Ca)/n(Si) value required is higher than the theoretical design value, that is, n(Ca)/n(Si)>2.6. Otherwise, it is easy to over sinter and prone to produce calcium alumina feldspar, which is not conducive to the clinker strength development. n(Ca)/n(Si) value has a significant influence on the early compressive strength and carbonation degree of cement, and the compressive strength decreases with the increase of n(Ca)/n(Si) value. The produced cement with n(Ca)/n(Si)=2.8-3.2 upon 2 days of carbonation can attain a compressive strength of 50 MPa, or even up to 72 MPa. However, when the n(Ca)/n(Si) value increases to 3.3-3.7, the compressive strength drops to 25-30 MPa with CaCO3 content of about 12.00%. Future research is needed to elucidate the role of hydration and carbonation mechanism of various minerals in contributing the strength development.

    图1 1 100~1 250 ℃下烧结熟料的外观形貌图Fig.1 Appearance of sintered clinkers at 1 100-1 250 ℃
    图2 烧结熟料的XRD图谱Fig.2 XRD patterns of sintered clinkers
    图3 1 150 ℃烧结熟料的XRD图谱Fig.3 XRD patterns of sintered clinkers at 1 150 ℃
    图4 碳化2 d后水泥的抗压强度Fig.4 Compressive strength of cements after carbonation for 2 d
    图5 碳化2 d后水泥的CaCO3生成量Fig.5 CaCO3 contents of cements after carbonation for 2 d
    图6 不同n(Ca)/n(Si)值下碳化2 d后水泥的DTG分析Fig.6 DTG analysis of cements after carbonation for 2 d under different n(Ca)/n(Si) values
    表 2 矿物组成设计及生料配料方案Table 2 Design of mineral compositions and the mix proportions of raw materials
    表 1 原材料的化学组成Table 1 Chemical compositions of raw materials
    参考文献
    [1] 丁美荣. 水泥行业碳排放现状分析与减排关键路径探讨[J]. 中国水泥, 2021(7):46-49.
    [2] 李娟. 高贝利特硫铝酸盐水泥的研究[D]. 武汉:武汉理工大学, 2013.
    [3] BERGER R L, YOUNG J F, LEUNG K. Acceleration of hydration of calcium silicates by carbon dioxide treatment[J]. Nature, 1972, 240(97):16-18.
    [4] GOODBRAKE C J, YOUNG J F, BERGER R L. Reaction of hydraulic calcium silicates with carbon dioxide and water[J]. Journal of the American Ceramic Society, 1979, 62:488-491.
    [5] BUKOWSKI J M, BERGER R L. Reactivity and strength development of CO2 activated non-hydraulic calcium silicates[J]. Cement and Concrete Research, 1979, 9(1):57-68.
    [6] BERGER R L, KLEMM W A. Accelerated curing of cementitious systems by carbon dioxide Part-Ⅱ:Hydraulic calcium silicates and aluminates[J]. Cement and Concrete Research, 1972, 2(6):647-652
    [7] YOUNG J F, BERGER R L, BREESE J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2[J]. Journal of the American Ceramic Society, 1974, 57(9):394-397.
    [8] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates:Potential of utilizing low-lime calcium silicates in cement-based materials[J]. Journal of Materials Science, 2016, 51(13):6173-6191.
    [9] ASHRAF W, OLEK J. Carbonation activated binders from pure calcium silicates:Reaction kinetics and performance controlling factors[J]. Cement and Concrete Composites, 2018, 93:85-98.
    [10] 张文生, 刘潭, 任雪红. 硅质原料对熟料烧成的影响[J]. 建筑材料学报, 2020, 23(3):618-624.
    [11] 施惠生, 吴凯, 郭晓潞, 等. 垃圾焚烧飞灰研制硫铝酸盐水泥及其水化特性[J]. 建筑材料学报, 2011, 14(6):730-736.
    [12] 陈明源. 氯硫硅酸钙的化学组成和晶胞参数[J]. 硅酸盐通报, 1988, 7(1):11-14.
    [13] 左晓宝, 邹帅, 李向南, 等. 氯盐环境下粉煤灰混凝土中钢筋的锈蚀过程[J]. 建筑材料学报, 2020, 23(4):875-881.
    [14] 陈克凡, 乔宏霞, 王鹏辉, 等. 氯氧镁水泥钢筋混凝土通电锈蚀的断裂性能分析[J]. 建筑材料学报, 2020, 23(3):557-562.
    [15] JIANG Y, LING T C. Production of artificial aggregates from steel-making slag:Influences of accelerated carbonation during granulation and/or post-curing[J]. Journal of CO2 Utilization, 2020, 36:135-144.
    [16] LI X M, LING T C. Instant CO2 curing for dry-mix pressed cement pastes:Consideration of CO2 concentrations coupled with further water curing[J]. Journal of CO2 Utilization, 2020, 38:348-354.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晓丽,林忠财.固废基低钙固碳水泥熟料组成设计及烧成过程[J].建筑材料学报,2022,25(11):1115-1120

复制
分享
文章指标
  • 点击次数:294
  • 下载次数: 613
  • HTML阅读次数: 30
  • 引用次数: 0
历史
  • 收稿日期:2022-04-27
  • 最后修改日期:2022-06-28
  • 在线发布日期: 2022-11-30
文章二维码