非水反应高聚物喷涂材料的动力特性
作者:
  • 孙博 1,2,3,4

    孙博

    中山大学 土木工程学院,广东 广州 510275;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519080;中山大学 广东省海洋土木工程重点实验室,广东 广州 510275;中山大学 广东省地下空间开发工程技术研究中心,广东 广州 510275
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭成超 1,2,3,4

    郭成超

    中山大学 土木工程学院,广东 广州 510275;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519080;中山大学 广东省海洋土木工程重点实验室,广东 广州 510275;中山大学 广东省地下空间开发工程技术研究中心,广东 广州 510275
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈震 1,2,3,4

    陈震

    中山大学 土木工程学院,广东 广州 510275;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519080;中山大学 广东省海洋土木工程重点实验室,广东 广州 510275;中山大学 广东省地下空间开发工程技术研究中心,广东 广州 510275
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王雪珂 1,2,3,4

    王雪珂

    中山大学 土木工程学院,广东 广州 510275;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519080;中山大学 广东省海洋土木工程重点实验室,广东 广州 510275;中山大学 广东省地下空间开发工程技术研究中心,广东 广州 510275
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王复明 1,2,3,4

    王复明

    中山大学 土木工程学院,广东 广州 510275;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519080;中山大学 广东省海洋土木工程重点实验室,广东 广州 510275;中山大学 广东省地下空间开发工程技术研究中心,广东 广州 510275
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.中山大学 土木工程学院,广东 广州 510275;2.南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519080;3.中山大学 广东省海洋土木工程重点实验室,广东 广州 510275;4.中山大学 广东省地下空间开发工程技术研究中心,广东 广州 510275

作者简介:

孙 博(1993—), 男, 河南商丘人, 中山大学博士生. E-mail: sunb27@mail2.sysu.edu.cn

通讯作者:

郭成超(1973—), 男, 河南南阳人, 中山大学教授, 博士生导师, 博士. E-mail: guochch25@mail.sysu.edu.cn

中图分类号:

TU411

基金项目:

“十四五”国家重点研发计划项目(2021YFB2600800); “十三五”国家重点研发计划项目(2018YFC1802303)


Dynamic Property of Non-water Reacted Polymer Spraying Materials
Author:
  • SUN Bo 1,2,3,4

    SUN Bo

    School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;Guangdong Provincial Key Laboratory of Oceanic Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Guangdong Provincial Research Center for Underground Space Exploitation Technology, Sun Yat-Sen University, Guangzhou 510275, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Chengchao 1,2,3,4

    GUO Chengchao

    School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;Guangdong Provincial Key Laboratory of Oceanic Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Guangdong Provincial Research Center for Underground Space Exploitation Technology, Sun Yat-Sen University, Guangzhou 510275, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Zhen 1,2,3,4

    CHEN Zhen

    School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;Guangdong Provincial Key Laboratory of Oceanic Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Guangdong Provincial Research Center for Underground Space Exploitation Technology, Sun Yat-Sen University, Guangzhou 510275, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Xueke 1,2,3,4

    WANG Xueke

    School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;Guangdong Provincial Key Laboratory of Oceanic Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Guangdong Provincial Research Center for Underground Space Exploitation Technology, Sun Yat-Sen University, Guangzhou 510275, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Fuming 1,2,3,4

    WANG Fuming

    School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;Guangdong Provincial Key Laboratory of Oceanic Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;Guangdong Provincial Research Center for Underground Space Exploitation Technology, Sun Yat-Sen University, Guangzhou 510275, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;3.Guangdong Provincial Key Laboratory of Oceanic Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;4.Guangdong Provincial Research Center for Underground Space Exploitation Technology, Sun Yat-Sen University, Guangzhou 510275, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于扫描电镜和共振柱系统,研究了动剪应变、围压和密度对高聚物喷涂材料动力特性的耦合影响规律和机理.结果表明:随着动剪应变的增大,高聚物喷涂材料的动剪切模量呈线性减小,阻尼比增速先快后慢;相同密度条件下,围压越大,高聚物喷涂材料的动剪切模量越大,阻尼比越小;动剪应变、围压和密度对高聚物喷涂材料动剪切模量的耦合影响效应显著,围压和密度对其阻尼比的耦合影响效应显著;泡孔间的错动摩擦和对波动的传播衰减构成高聚物耗能机制,较高围压下,密度为0.250 g/cm3的高聚物喷涂材料表现出“耗能最优”.

    Abstract:

    Based on scanning electron microscope and resonance column system, the regularity and mechanism of the coupling effects of dynamic shear strain, confining pressure, and density on the dynamic property of polymer spraying materials were studied. The results show that the dynamic shear modulus decreases linearly with the increase of dynamic shear strain, and the damping ratio first increases rapidly and then increases slowly. At the same density, the higher the confining pressure, the greater the dynamic shear modulus and the smaller the damping ratio of polymer spraying materials. The dynamic shear strain, confining pressure and density have significant coupling effects on the dynamic shear modulus of the polymer spraying materials, and the coupling effects of density and confining pressure on its damping ratio are significant. The staggered friction between bubbles and the propagation attenuation of waves constitute the energy consumption mechanism of polymer. Under high confining pressure, the polymer spraying material with the density of 0.250 g/cm3 shows “the best energy consumption”.

    图1 不同密度高聚物的SEM照片Fig.1 SEM images of polymers with different densities
    图2 高聚物动剪应变与激励电压的关系Fig.2 Relationship between γd and UE of polymers (p=400 kPa)
    图3 不同围压下高聚物动剪切模量与动剪应变的关系Fig.3 Relationship between Gd and γd of polymers at different confining pressures(ρ=0.352 g/cm3)
    图7 不同围压下密度对高聚物阻尼比-动剪应变关系的影响Fig.7 Effect of density on the relationship between D and γd of polymers at different confining pressures
    参考文献
    [1] LI T B. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2):297-308.
    [2] ZHANG X P, JIANG Y J, SUGIMOTO S S. Seismic damage assessment of mountain tunnel:A case study on the Tawarayama tunnel due to the 2016 Kumamoto earthquake[J]. Tunnelling and Underground Space Technology, 2018, 71:138-148.
    [3] 何川, 耿萍. 强震活动断裂带铁路隧道建设面临的挑战与对策[J]. 中国铁路, 2020, 12:61-68.HE Chuan, GENG Ping. Challenges and countermeasures of railway tunnel construction in macroseismic active fault zone[J]. China Railway, 2020, 12:61-68.(in Chinese)
    [4] 夏志强, 凌可胜, 董克胜, 等. 地铁列车曲线运行引起学校建筑物振动响应分析[J]. 地震工程学报, 2021, 43(6):1377-1386.XIA Zhiqiang, LING Kesheng, DONG Kesheng, et al. Vibration response analysis of school buildings caused by metro trains running on a curved track[J]. China Earthquake Engineering Journal, 2021, 43(6):1377-1386.(in Chinese)
    [5] 王帅帅, 高波. 隧道设置减震层减震机制研究[J]. 岩石力学与工程学报, 2016, 35(3):592-603.WANG Shuaishuai, GAO Bo. Damping mechanism and shaking table test on mountain tunnel linings with buffer layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3):592-603.(in Chinese)
    [6] 李梅, 邹蓓. 减振层对地铁移动荷载下环境振动影响研究[J]. 武汉理工大学学报, 2016, 38(11):87-91.LI Mei, ZOU Bei. Study on the effect of damping layer on the environmental vibration of subway under moving load[J]. Journal of Wuhan University of Technology, 2016, 38(11):87-91. (in Chinese)
    [7] 崔光耀, 王明年, 于丽, 等. 穿越黏滑错动断层隧道减震层减震技术模型试验研究[J]. 岩土工程学报, 2013, 35(9):1753-1758.CUI Guangyao, WANG Mingnian, YU Li, et al. Model tests on damping shake technology of shock absorption layer of tunnels crossing stick-slip faults[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9):1753-1758.(in Chinese)
    [8] MA S S, CHEN W Z, ZHAO W S. Mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1):159-171.
    [9] 赵冰冰. 沥青系盾构隧道壁后注浆材料隔震性能研究[D]. 成都:西南交通大学, 2019.ZHAO Bingbing. Research on seismic isolation performance of bituminous backfill grouting materials for shield tunnel[D]. Chengdu:Southwest Jiaotong University, 2019.(in Chinese)
    [10] SU L J, LIU H Q, YAO G C, et al. Experimental study on the closed-cell aluminum foam shock absorption layer of a high-speed railway tunnel[J]. Soil Dynamics and Earthquake Engineering, 2019, 119:331-345.
    [11] ZHANG C M, CHEN Y J, LI H, et al. Facile fabrication of polyurethane-based graphene foam/lead zirconate titanate/polydimethylsiloxane composites with good damping performance[J]. Rsc Advances, 2018, 8(15):7916-7923.
    [12] 高翔, 黄卫, 魏亚, 等. 聚氨酯高聚物注浆材料抗压强度测试与模拟[J]. 复合材料学报, 2017, 34(2):438-445.GAO Xiang, HUANG Wei, WEI Ya, et al. Experiment and modeling for compressive strength of polyurethane grout materials[J]. Acta Materiae Compositae Sinica, 2017, 34(2):438-445.(in Chinese)
    [13] 李嘉, 陈硕, 张景伟, 等. 基于动态热机械分析的非水反应高聚物材料动态黏弹特性[J]. 建筑材料学报, 2020, 23(6):1398-1409.LI Jia, CHEN Shuo, ZHANG Jingwei, et al. Dynamic viscoelastic property of non-water reacted polymer materials based on dynamic thermomechanical analysis[J]. Journal of Building Materials, 2020, 23(6):1398-1409.(in Chinese)
    [14] 王钰轲, 万永帅, 刘琪, 等. 非水反应高聚物与土工材料的界面剪切特性[J]. 建筑材料学报, 2021, 24(1):115-120.WANG Yuke, WAN Yongshuai, LIU Qi, et al. Interfacial shear properties of non-water reacted polymer and geomaterials[J]. Journal of Building Materials, 2021, 24(1):115-120.(in Chinese)
    [15] 王超杰, 李逢源, 郭成超, 等. 高聚物固化粉土的力学特性与固结机理研究[J]. 建筑材料学报, 2022, 25(6):598-606.WANG Chaojie, LI Fengyuan, GUO Chengchao, et al. Mechanical properties and consolidation mechanism of polymer solidified silt[J]. Journal of Building Materials, 2022, 25(6):598-606.(in Chinese)
    [16] 郭成超, 王复明, 徐建国. 隧道高聚物快速维修技术研究[J]. 筑路机械与施工机械化, 2008, 25(12):60-62.GUO Chengchao, WANG Fuming, XU Jianguo. Study on polymer grouting technology for tunnel quick maintenance[J]. Road Machinery & Construction Mechanization, 2008, 25(12):60-62.(in Chinese)
    [17] 王复明, 范永丰, 郭成超. 非水反应类高聚物注浆渗漏水处治工程实践[J]. 水力发电学报, 2018, 37(10):1-11.WANG Fuming, FAN Yongfeng, GUO Chengchao. Practice of non-water-reacting polymer grouting treatment to seepage[J]. Journal of Hydroelectric Engineering, 2018, 37(10):1-11.(in Chinese)
    [18] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press, 2019.(in Chinese)
    [19] 曹艳梅, 马蒙. 轨道交通环境振动土动力学[M]. 北京:科学出版社, 2020:207-208.CAO Yanmei, MA Meng. Dynamics of vibrating soil in the rail transit environment[M]. Beijing:Science Press, 2020:207-208.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙博,郭成超,陈震,王雪珂,王复明.非水反应高聚物喷涂材料的动力特性[J].建筑材料学报,2023,26(5):492-498

复制
分享
文章指标
  • 点击次数:165
  • 下载次数: 383
  • HTML阅读次数: 8
  • 引用次数: 0
历史
  • 收稿日期:2022-04-19
  • 最后修改日期:2022-05-20
  • 在线发布日期: 2023-06-08
文章二维码