玄武岩粉末-电石渣-脱硫石膏水热固化机理分析
作者:
作者单位:

河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210024

作者简介:

孔纲强(1982—), 男, 浙江金华人, 河海大学教授, 博士生导师, 博士. E-mail: gqkong1@163.com

通讯作者:

孔纲强(1982—), 男, 浙江金华人, 河海大学教授, 博士生导师, 博士. E-mail: gqkong1@163.com

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(52178327)


Hydrothermal Solidification Mechanism of Basalt Powder-Carbide Slag-Desulfurized Gypsum System
Author:
Affiliation:

Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing 210024, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以玄武岩粉末-电石渣固体废弃物凝胶体系为主料,掺入脱硫石膏,利用水热固化技术制备了人造石颗粒材料,分析了不同水热固化温度、水热固化时间、钙硅比对人造石颗粒强度及物相变化规律的影响.结果表明:人造石颗粒的抗压强度高于30 MPa,电石渣可替代消石灰;人造石颗粒的最佳制配方案为钙硅比0.9、温度200 ℃、时间12 h以及脱硫石膏添加量约5%.

    Abstract:

    Using the gel system of basalt powder-carbide slag solid waste as the main material and adding desulfurized gypsum, the artificial stone particles were prepared by hydrothermal curing technology. The effects of different hydrothermal curing temperatures, hydrothermal curing time and calcium-silicon ratio on the strength and phase variation of artificial stone particles were analyzed. The results show that the compressive strength of artificial stone particles is higher than 30 MPa, and calcium carbide slag can replace slaked lime. The optimal preparation scheme of artificial stone particles is as follows: calcium-silicon ratio is 0.9, temperature is 200 ℃, time is 12 h and desulfurization gypsum content is about 5%.

    表 3 不同点的EDS分析结果Table 3 EDS analysis results of different spots
    图1 CS、DG和BP的SEM照片Fig.1 SEM images of CS, DG and BP
    图2 CS、DG和BP的XRD图谱Fig.2 XRD patterns of CS, DG and BP
    图3 钙硅比对人造石颗粒抗压强度的影响Fig.3 Effects of n(Ca)/n(Si) on compressive strength of artificial stone particles
    图4 不同钙硅比下人造石颗粒的XRD和FTIR图谱Fig.4 XRD patterns and FTIR spectra of artificial stone particles under different n(Ca)/n(Si)
    图5 不同钙硅比下人造石颗粒的N2吸附-脱附等温曲线Fig.5 N2 adsorption and desorption isotherm of artificial stone particles under different n(Ca)/n(Si)
    图6 水热固化温度对人造石颗粒抗压强度的影响Fig.6 Effects of hydrothermal curing temperatures on compressive strength of artificial stone particles
    图7 不同水热固化温度下人造石颗粒的XRD和FTIR图谱Fig.7 XRD patterns and FTIR spectra of artificial stone particles under different hydrothermal curing temperatures
    图8 水热固化时间对人造石颗粒抗压强度及结晶度的影响Fig.8 Effects of hydrothermal curing time on compressive strength and crystallinty of artificial stone particles
    图9 不同水热固化时间下人造石颗粒的XRD和FTIR图谱Fig.9 XRD patterns and FTIR spectra of artificial stone particles under different hydrothermal curing time
    图10 不同水热固化时间下人造石颗粒的SEM照片Fig.10 SEM images of artificial stone particles with different hydrothermal curing time
    图11 脱硫石膏掺量对人造石颗粒抗压强度的影响Fig.11 Effect of desulfurized gypsum contents on compressive strength of artificial stone particles
    表 2 试验工况Table 2 Test conditions
    表 1 CS、DG和BP的化学组成Table 1 Chemical compositions of CS, DG and BP
    参考文献
    相似文献
    引证文献
引用本文

孔纲强,虞杨,陈永辉,周杨,陈庚.玄武岩粉末-电石渣-脱硫石膏水热固化机理分析[J].建筑材料学报,2023,26(4):389-396

复制
分享
文章指标
  • 点击次数:170
  • 下载次数: 462
  • HTML阅读次数: 28
  • 引用次数: 0
历史
  • 收稿日期:2022-04-11
  • 最后修改日期:2022-07-13
  • 在线发布日期: 2023-05-08
文章二维码