聚乙二醇/水泥基复合相变材料的制备与表征
作者:
作者单位:

1.中南大学 土木工程学院,湖南 长沙 410075;2.深圳大学 土木与交通工程学院, 广东 深圳 518061;3.长沙理工大学 交通运输工程学院,湖南 长沙 410076

作者简介:

杜银飞(1985—), 男, 山东临沂人, 中南大学副教授, 硕士生导师, 博士. E-mail: yfdu_csu@csu.edu.cn

通讯作者:

马 聪(1989—), 男, 山东菏泽人, 深圳大学助理教授, 硕士生导师, 博士. E-mail: macong@szu.edu.cn

中图分类号:

U416.2

基金项目:

“十四五”国家重点研发计划项目(2021YFB2601000); 国家自然科学基金资助项目(51808562); 湖南省自然科学基金资助项目(2020JJ5723)


Preparation and Characterization of Polyethylene Glycol/ Cement-Based Composite Phase Change Materials
Author:
Affiliation:

1.School of Civil Engineering, Central South University, Changsha 410075, China;2.College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, China;3.School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410076, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于水化-结晶法,以聚乙二醇为相变材料,硫铝酸盐水泥的水化产物为基体,利用聚乙二醇的水溶性和硫铝酸盐水泥的水硬性制备了一种高聚乙二醇含量的水泥基复合相变材料(CPCMs),研究了其微观结构、化学兼容性、晶体结构、相变特性、热稳定性及降温效果.结果表明:聚乙二醇能够均匀地分散在硫铝酸盐水泥水化产物构成的多孔网络结构中,负载情况良好;聚乙二醇与硫铝酸盐水泥水化产物的化学兼容性良好,二者没有发生化学反应;CPCMs在250 ℃以下具有良好的热稳定性,具备用于相变储热沥青路面的温度条件;当聚乙二醇质量分数为36.36%时,CPCMs的相变焓高达62.48 J/g,与对照组硫铝酸盐水泥相比,其表面温度降低了7.3 ℃.

    Abstract:

    Hydration products of sulphoaluminate cement were used to produce the phase change material of polyethylene glycol. A kind of cement-based composite phase change materials(CPCMs) with high polyethylene glycol content was prepared by the steps of hydration and crystallization, taking advantage of the water solubility of polyethylene glycol and the hydraulic property of sulphoaluminate cement. The microstructure, chemical compatibility, crystal structure, phase change properties, thermal stability and cooling performance of CPCMs with different polyethylene glycol contents were systematically analyzed. The results show that polyethylene glycol is well distributed in the porous network structure of hydration products with high loading capacity. Polyethylene glycol and hydration products of sulphoaluminate cement have good chemical compatibility with no chemical reaction between them. CPCMs have good thermal stability under 250 ℃, indicating that the CPCMs can be used to construct phase change thermal storage asphalt pavement. The phase change enthalpy of CPCMs with polyethylene glycol mass fraction of 36.36% can reach up to 62.48 J/g, the surface temperature of which reduces by 7.3 ℃ compared with the control group sulphoaluminate cement.

    表 4 PEG和CPCMs的相变特性Table 4 Phase change characteristics of PEG and CPCMs
    表 2 试样的分组Table 2 Grouping of samples
    表 1 SAC的化学组成Table 1 Chemical composition of SAC
    图1 室内照射试验示意图Fig.1 Diagram of indoor irradiation test
    图2 SAC和CPCMs的SEM图像Fig.2 SEM images of SAC and CPCMs
    图3 PEG、SAC和CPCMs的FTIR图谱Fig.3 FTIR spectra of PEG, SAC and CPCMs
    图4 PEG、SAC和CPCMs的XRD图谱Fig.4 XRD patterns of PEG, SAC and CPCMs
    图5 PEG与CPCMs的DSC结果Fig.5 DSC results of PEG and CPCMs
    图6 SAC和CPCMs的TG-DTG曲线Fig.6 TG-DTG curves of SAC and CPCMs
    图7 SAC和CPCMs的表面温度分布Fig.7 Surface temperature profiles of SAC and CPCMs
    参考文献
    [1] 张争奇, 张世豪, 郭大同, 等. 彩色反射式沥青路面涂层的路用性能[J]. 江苏大学学报(自然科学版), 2018, 39(5):611-616.ZHANG Zhengqi, ZHANG Shihao, GUO Datong, et al. Road performance of color reflective asphalt pavement coating[J]. Journal of Jiangsu University(Natural Science), 2018, 39(5):611-616. (in Chinese)
    [2] CAO X J, TANG B M, LUO T Y, et al. Preparation of fluorinated acrylate coating with high albedo and its cooling effect on asphalt mixture[J]. Road Materials and Pavement Design, 2017, 18(2):464-476.
    [3] 卢桂林, 许新权, 唐志赟, 等. 高模量改性剂的作用机理及应用研究[J]. 建筑材料学报, 2021, 24(2):355-361.LU Guilin, XU Xinquan, TANG Zhiyun, et al. Mechanism and application of high modulus agent[J]. Journal of Building Materials, 2021, 24(2):355-361. (in Chinese)
    [4] JIANG W, XIAO J J, YUAN D G, et al. Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions[J]. Energy and Buildings, 2018, 169:39-47.
    [5] MOHAJERANI A, BAKARIC J, JEFFREY-BAILEY T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete[J]. Journal of Environmental Management, 2017, 197:522-538.
    [6] JIN J, XIAO T, ZHENG J L, et al. Preparation and thermal properties of encapsulated ceramsite-supported phase change materials used in asphalt pavements[J]. Construction and Building Materials, 2018, 190:235-245.
    [7] 冯哲, 虎东霞, 赵龙, 等. 相变材料在道路工程中的研究现状综述[J]. 材料导报, 2015, 29(1):144-147.FENG Zhe, HU Dongxia, ZHAO Long, et al. Applications of phase change material to road engineering[J]. Materials Reports, 2015, 29(1):144-147. (in Chinese)
    [8] KONUKLU Y, OSTRY M, PAKSOY H O, et al. Review on using microencapsulated phase change materials (PCM) in building applications[J]. Energy and Buildings, 2015, 106:134-155.
    [9] MOHSENI E, TANG W, WANG S. Development of thermal energy storage lightweight structural cementitious composites by means of macro-encapsulated PCM[J]. Construction and Building Materials, 2019, 225:182-195.
    [10] HUANG X B, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661.
    [11] 王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3):1483-1494.WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3):1483-1494. (in Chinese)
    [12] SARI A, BICER A, KARAIPEKLI A, et al. Preparation, characterization and thermal regulation performance of cement based-composite phase change material[J]. Solar Energy Materials and Solar Cells, 2018, 174:523-529.
    [13] 孙茹茹, 李化建, 黄法礼, 等. 相变材料在水泥基材料中的应用[J]. 硅酸盐通报, 2020, 39(3):662-668, 676.SUN Ruru, LI Huajian, HUANG Fali, et al. Application of phase change materials in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3):662-668, 676. (in Chinese)
    [14] LIU Z Y, ZANG C Y, HU D, et al. Thermal conductivity and mechanical properties of a shape-stabilized paraffin/recycled cement paste phase change energy storage composite incorporated into inorganic cementitious materials[J]. Cement and Concrete Composites, 2019, 99:165-174.
    [15] SUTTAPHAKDEE P, DULSANG N, LORWANNISHPAI-SARN N, et al. Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite[J]. Construction and Building Materials, 2016, 127:475-483.
    [16] 廖国胜, 徐路, 廖宜顺. 硅灰对硫铝酸盐水泥水化行为的影响机理[J]. 建筑材料学报, 2017, 20(6):840-845.LIAO Guosheng, XU Lu, LIAO Yishun. Influence of silica fume on the hydration behavior of calcium sulphoaluminate cement[J]. Journal of Building Materials, 2017, 20(6):840-845. (in Chinese)
    [17] 桑国臣, 曹艳洲, 樊敏, 等. 硫铝酸盐水泥基复合相变储能砂浆的制备及其性能[J]. 复合材料学报, 2018, 35(8):2124-2131.SANG Guochen, CAO Yanzhou, FAN Min, et al. Preparation and properties of sulphoaluminate cement-based composite phase change storage mortar[J]. Acta Materiae Compositae Sinica, 2018, 35(8):2124-2131. (in Chinese)
    [18] SINGH L P, BHATTACHARYYA S K, MISHRA G, et al. Reduction of calcium leaching in cement hydration process using nanomaterials[J]. Materials Technology, 2012, 27(3):233-238.
    [19] SHINZAWA H, UCHIMARU T, MIZUKADO J, et al. Non-equilibrium behavior of polyethylene glycol (PEG)/polypropylene glycol (PPG) mixture studied by Fourier transform infrared(FTIR) spectroscopy[J]. Vibrational Spectroscopy, 2017, 88:49-55.
    [20] 何丽红, 王浩, 杨帆,等. 聚乙二醇/SiO2定形相变材料在沥青中的相变储热性能[J]. 化工进展, 2018, 37(3):1076-1083.HE Lihong, WANG Hao, YANG Fan, et al. Phase change heat storage properties of PEG/SiO2 shape-stabilized phase change materials in asphalt[J]. Chemical Industry and Engineering Progress, 2018, 37(3):1076-1083. (in Chinese)
    [21] 白静静, 李海艳, 史才军,等. 硫铝酸盐水泥用抗泥型聚羧酸减水剂的制备及性能[J]. 材料导报, 2018, 32(14):2384-2389.BAI Jingjing, LI Haiyan, SHI Caijun, et al. Preparation and properties of anti-clay type polycarboxylate superplasticizer for sulphoaluminate cement[J]. Materials Review, 2018, 32(14):2384-2389. (in Chinese)
    [22] LI H Y, YANG K, GUAN X M. Properties of sulfoaluminate cement-based grouting materials modified with LiAl-layered double hydroxides in the presence of PCE superplasticizer[J]. Construction and Building Materials, 2019, 226:399-405.
    [23] LIU Z L, TANG B T, ZHANG S F. Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy[J]. Solar Energy Materials and Solar Cells, 2020, 216:110678.
    [24] HU H H, ZUO X B, CUI D, et al. Experimental study on leaching-abrasion behavior of concrete in flowing solution with low velocity[J]. Construction and Building Materials, 2019, 224:762-772.
    [25] WANG F, ZHANG P, MOU Y R, et al. Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage[J]. Polymer Testing, 2017, 63:494-504.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜银飞,王志杰,全先凯,马聪,金娇.聚乙二醇/水泥基复合相变材料的制备与表征[J].建筑材料学报,2023,26(4):361-368

复制
分享
文章指标
  • 点击次数:250
  • 下载次数: 577
  • HTML阅读次数: 29
  • 引用次数: 0
历史
  • 收稿日期:2022-03-22
  • 最后修改日期:2022-04-18
  • 在线发布日期: 2023-05-08
文章二维码