基于离散元的EMAS泡沫混凝土贯入力学性能研究
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.中建丝路建设投资有限公司, 陕西 西安 710075;3.中国公路学会,北京 100011

作者简介:

朱兴一(1983—),女,浙江绍兴人,同济大学教授,博士生导师,博士.E-mail:zhuxingyi66@tongji.edu.cn

通讯作者:

石小培(1986—),女,北京人,中国公路学会副研究员,硕士.E-mail:310255050@qq.com

中图分类号:

TU528.2

基金项目:

国家自然科学基金资助项目(51922079,61911530160);上海市教育发展基金会和上海市教委“曙光计划”(21SG24);上海市“科技创新行动计划”国际科技合作项目(22210710700)


Penetration Mechanical Properties of EMAS Foam Concrete Based on Discrete Element Simulation
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China;2.China State Construction Silkroad Construction Investment Group Co., Ltd., Xi’an 710075, China;3.China Highway & Transportation Society, Beijing 100011, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过贯入力学试验研究特性材料拦阻系统(EMAS)泡沫混凝土在破碎碾压过程中的力学性能,并分析了冻融作用对其压溃强度及吸能效果的影响.在初步建立泡沫混凝土离散元模型的基础上,提出“虚拟试验法”,以获得泡沫混凝土离散元模型的最佳参数组合.通过模拟抗压强度试验证明了模型仿真精度可达97.7%.在此模型的基础上,研究了混凝土子颗粒及孔隙颗粒的半径和力学参数对材料贯入力学性能的影响.所提出的EMAS泡沫混凝土材料离散元模型可为EMAS拦阻过程仿真提供更为精确的研究方法.

    Abstract:

    Penetration tests were conducted to study the mechanical properties of engineered materials arresting system(EMAS) foam concrete in crushing process. The effects of freeze-thaw cycles on its compressive strength and energy absorption were analyzed. A discrete element model of foam concrete was established, and the virtual test method was proposed to calibrate parameters of the model. The simulation results of compressive strength prove that the accuracy of the model can reach 97.7%. With this model, the influences of particle size and mechanical parameters on penetration mechanical properties of foam concrete were studied. The discrete element model of EMAS foam concrete proposed in this work provides a more accurate research method for EMAS arresting simulation.

    表 2 接触模型参数Table 2 Parameters of contact model
    表 1 EMAS泡沫混凝土的配合比Table 1 Mix proportion of EMAS foam concrete
    图1 泡沫混凝土试件Fig.1 Foam concrete specimens
    图2 EMAS泡沫混凝土典型压溃曲线Fig.2 Typical compression curve of EMAS foam concrete
    图3 Hertz-Mindlin with bonding和Hertz-Mindlin(noslip)接触模型Fig.3 Contact models of Hertz-Mindlin with bonding and Hertz-Mindlin(no slip)
    图4 泡沫混凝土试件离散元模型Fig.4 Discrete element model of foam concrete specimen
    图5 模拟贯入力学试验与实际贯入力学试验Fig.5 Simulated penetration test and actual penetration test
    图6 模拟抗压强度试验与实际抗压强度试验Fig.6 Simulated compressive test and actual compressive test
    图7 泡沫混凝土贯入过程仿真Fig.7 Penetration process simulation of foam concrete
    图8 冻融循环前后泡沫混凝土的实测压溃曲线Fig.8 Test compression curves of foam concretes before and after freeze-thaw cycles
    图9 不同混凝土子颗粒半径下试件的模拟压溃曲线Fig.9 Simulated compression curves of foam concretes with different concrete particle radius
    图10 不同孔隙颗粒半径下试件的模拟压溃曲线Fig.10 Simulated compression curves of foam concretes with different pore particle radius
    图11 接触强度变化对泡沫混凝土力学性能的影响Fig.11 Effect of micro-strength on mechanical property of foam concrete
    图12 接触刚度变化对泡沫混凝土力学性能的影响Fig.12 Effect of micro-stiffness on mechanical property of foam concrete
    参考文献
    [1] 姚红宇, 史亚杰, 肖宪波, 等. 飞机拦阻用泡沫混凝土材料压缩性能的表征[J]. 失效分析与预防,2015, 10(2):83-86.YAO Hongyu, SHI Yajie, XIAO Xianbo, et al. Characterization of compressive properties of foamed concrete used for aircraft arrestment[J]. Failure Analysis and Prevention, 2015, 10(2):83-86. (in Chinese)
    [2] JIANG C S, YAO H Y, XIAO X B, et al. Phenomena of foamed concrete under rolling of aircraft wheels[J]. Journal of Physics:Conference Series,2014,495:012035.
    [3] 肖帆. 泡沫填充混凝土冲击压剪力学性能实验研究[D]. 广州:华南理工大学,2014.XIAO Fan. Experimental study on the mechanical behavior of foam filled concrete under impact compression/shear loading[D]. Guangzhou:South China University of Technology, 2014. (in Chinese)
    [4] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报,2020, 23(2):466-472.HUANG Haijian, GONG Nengping, MU Chaomin, et al. Dynamic mechanical properties and constitutive relation of foam concrete[J]. Journal of Building Materials, 2020, 23(2):466-472. (in Chinese)
    [5] STEYN W J, LOMBARD S, HORAK E. Foamed concrete-based material as a soft ground arresting system for runways and airfields[J]. Journal of Performance of Constructed Facilities, 2016, 30 (1):C4014006.
    [6] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报,2021, 24(6):1146-1153.LI Shengtao, CHEN Xudong, ZHANG Jinhua, et al. Failure characteristics of foam concrete with different density under uniaxial compression[J]. Journal of Building Materials, 2021, 24(6):1146-1153. (in Chinese)
    [7] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1):93-98.PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials, 2017, 20(1):93-98. (in Chinese)
    [8] 贾艳涛, 杨永敢.泡沫混凝土性能试验研究[J]. 硅酸盐通报, 2016, 35(9):2804-2809.JIA Yantao, YANG Yonggan. Experimental research on properties of foamed concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9):2804-2809. (in Chinese)
    [9] XU F, TAN Z, SHI Y J. Numerical simulation of aircraft overrun arresting system's arresting behavior[J]. Transactions of Beijing Institute of Technology, 2014, 34(8):776-780.
    [10] 杨先锋, 张志强, 杨嘉陵, 等.飞机泡沫混凝土道面拦阻系统的阻滞性能研究[J]. 兵工学报,2017, 38(增刊1):155-162.YANG Xianfeng, ZHANG Zhiqiang, YANG Jialing, et al. Research on retardation performance of aircraft foamed concrete arresting system[J]. Acta Armamentarii, 2017, 38(Suppl 1):155-162. (in Chinese)
    [11] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique,1979, 29(1):47-65.
    [12] 李臣. 振动慢剪破碎机破碎性能分析及实验研究[D]. 赣州:江西理工大学, 2018.LI Chen. Crushing performance analysis and experimental study on vibration-slow shear crusher[D]. Ganzhou:Jiangxi University of Science and Technology, 2018.(in Chinese)
    [13] FAKHIMI A, CARVALHO F, ISHIDA T, et al. Simulation of failure around a circular opening in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4):507-515.
    [14] NGUYEN T T, BUI H H, NGO T D, et al. Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete[J]. Materials and Design, 2017, 130:103-119.
    [15] NGUYEN T T, BUI H H, NGO T D, et al. A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression[J]. Engineering Fracture Mechanics, 2019, 209:228-244.
    [16] 蔡军, 匡渝阳.路用泡沫混凝土微观孔隙结构特性影响研究[J]. 中外公路,2021, 41 (5):222-226.CAI Jun, KUANG Yuyang. Study on microscopic pore structure characteristics of pavement cellular concrete[J]. Journal of China & Foreign Highway, 2021, 41(5):222-226. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱兴一,张启帆,于越,石小培.基于离散元的EMAS泡沫混凝土贯入力学性能研究[J].建筑材料学报,2023,26(2):122-128

复制
分享
文章指标
  • 点击次数:257
  • 下载次数: 389
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2021-12-30
  • 最后修改日期:2022-04-09
  • 在线发布日期: 2023-03-06
文章二维码