基于GBDT算法的混凝土叠合面黏结强度预测分析
作者:
作者单位:

1.宁波大学 土木与环境工程学院,浙江 宁波 315211;2.电子科技大学 计算机科学与工程学院, 四川 成都 611731;3.青岛农业大学 建筑工程学院,山东 青岛 266109

作者简介:

王建民(1974—),男,山西运城人,宁波大学教授,博士生导师,博士. E-mail:wangjianmin@nbu.edu.cn

通讯作者:

柳俊哲(1964—),男,黑龙江五常人,青岛农业大学教授,博士生导师,博士. E-mail:junzheliu@163.com

中图分类号:

TU528.2

基金项目:

国家自然科学基金资助项目(51878360,52178223);宁波市自然科学基金资助项目(202003N4136)


Prediction on Composite Interface Bonding Strength between Ceramsite Lightweight Aggregate Concrete and Normal Concrete Based on GBDT Algorithm
Author:
Affiliation:

1.School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China;2.School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;3.School of Architecture Engineering, Qingdao Agricultural University, Qingdao 266109, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    制备了陶粒轻骨料混凝土与普通混凝土叠合试块,以分组试验数据为小样本,采用端到端的梯度提升决策树(GBDT)集成学习算法,建立了混凝土叠合面处理方式、浇筑间隔时间及法向作用力等输入特征参数与叠合面黏结强度之间的预测模型;并将GBDT模型预测结果与支持向量回归、K近邻回归、决策树和BP神经网络等模型的预测结果进行综合对比.结果表明:GBDT模型预测结果的拟合优度、平均绝对误差和均方根误差均优于其它模型,其测试样本集的平均相对误差明显小于其它模型.所建立的GBDT模型具有较高的准确率,可对混凝土叠合面黏结强度的变化进行满意的预测分析.

    Abstract:

    By making composite blocks of ceramsite lightweight aggregate concrete(LWAC) and normal concrete(NC), the end-to-end gradient boosting decision tree(GBDT) predicting model was proposed based on the grouping experiment, which correlates composite interface preparing method, casting interval time and normal force on composite interface to bonding strength between LWAC and NC. The results from GBDT bonding strength prediction model are compared with those from the support vector machine regression model, K-nearest neighbor regression model, the decision tree and BP neural network. The comparison shows that the designed GBDT model is more robust than the other four models with superior predictive performance synthetically testified by the goodness of fit, mean absolute error and root mean squared error. In addition, the mean relative error from GBDT prediction for the test samples is obviously smaller than that from the other four models. An effective and satisfactory prediction result can be obtained for the composite interface bonding strength between LWAC and NC from the established GBDT model.

    表 3 模型预测结果评价参数Table 3 Evaluation parameters of prediction results from models
    表 2 试验样本分组Table 2 Groups of experimental samples
    图1 双面叠合浇筑试块及试验加载示意图Fig.1 Diagram of sandwich composite blocks and loading scheme(size: mm)
    图2 各试块黏结强度Fig.2 Bonding strength of composite blocks
    图3 GBDT 集成学习拓扑模型Fig.3 Topological model of GBDT ensemble learning algorithm
    图4 GBDT模型对3组测试样本预测结果的相对误差Fig.4 Relative errors of three sets of test samples from GBDT model
    表 1 LWAC和NC的配合比及28 d立方体抗压强度Table 1 Mix proportion and 28 d cubic compressive strength of LWAC and NC
    表 4 各模型对第3组测试样本的预测结果及相对误差Table 4 Predicted results and relative errors of the third group of samples by different models
    参考文献
    [1] WANG J M, XIAO Z Q, ZHU C F, et al. Experiment on the bonding performance of the lightweight aggregate and normal weight concrete composite beams[J]. Case Studies in Construction Materials, 2021, 15:e00565.
    [2] 袁群, 刘健. 新老混凝土粘结的剪切强度研究[J]. 建筑结构学报, 2001, 22(2):46-50.YUAN Qun, LIU Jian. Study on adhesive shear strength of young and old concrete[J]. Journal of Building Structures, 2001, 22(2):46-50. (in Chinese)
    [3] 王建民, 李鹏飞, 冯楚祥, 等. 陶粒轻骨料与普通混凝土黏结剪切性能[J]. 建筑材料学报, 2022, 25(7):700-707.WANG Jianmin, LI Pengfei, FENG Chuxiang, et al. Interfacial shear performance of ceramsite lightweight aggregate and normal concrete cold joint [J]. Journal of Building Materials, 2022, 25(7):700-707. (in Chinese)
    [4] 季韬, 林挺伟, 林旭健. 基于人工神经网络的混凝土抗压强度预测方法[J]. 建筑材料学报, 2005, 8(6):677-681.JI Tao, LIN Tingwei, LIN Xujian. Prediction method of concrete compressive strength based on artificial neural network[J]. Journal of Building Materials, 2005, 8(6):677-681. (in Chinese)
    [5] 陈华根, 吴健生, 陈冰. 人工神经网络在基坑底板混凝土测温中的应用[J]. 同济大学学报(自然科学版), 2001, 29(2):200-204.CHEN Huagen, WU Jiansheng, CHEN Bing. Application of neural net for the study of the inner temperature of concrete in pit soleplates[J]. Journal of Tongji University(Natural Science), 2001, 29(2):200-204. (in Chinese)
    [6] 王岩, 张友桃, 胡鸿翔, 等. 基于声发射和人工神经网络的混凝土损伤程度识别[J]. 建筑材料学报, 2014,17(4):672-676.WANG Yan, ZHANG Youtao, HU Hongxiang, et al. Identification of damage degree of concrete by acoustic emission and artificial neural network[J]. Journal of Building Materials, 2014, 17(4):672-676. (in Chinese)
    [7] ASTERIS P G, MOKOS V G. Concrete compressive strengthusing artificial neural networks[J]. Neural Computing and Applications, 2020, 32(15):11807-11826.
    [8] TUAN N S, JAD W, TO Q D, et al. Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method[J]. Construction and Building Materials, 2020, 260:119757.
    [9] PANG S, YANG X Y , ZHANG X F, et al. Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features[J].ISA Transactions, 2010, 98:320-337.
    [10] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:100-123.ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016:100-123. (in Chinese)
    [11] FRIEDMAN J H. Greedy function approximation:A gradient boosting machine[J]. The Annals of Statistics, 2000, 29(5):1189-1232.
    [12] 苏兴华, 孙俊明, 高翔, 等. 基于GBDT算法的钻井机械钻速预测方法研究[J]. 计算机应用与软件, 2019, 36(12):87-92.SU Xinghua, SUN Junming, GAO Xiang, et al. Prediction method of drilling rate of penetration based on GBDT algorithm[J]. Computer Applications and Software, 2019, 36(12):87-92. (in Chinese)
    [13] 王伟, 匡祯辉, 谢少捷, 等. 热镀锌钢卷力学性能GBDT预报模型[J]. 福州大学学报(自然科学版), 2020, 48(5):602-609.WANG Wei, KUANG Zhenhui, XIE Shaojie, et al. Research on GBDT prediction model of mechanical properties of hot dip galvanized steel coils[J]. Journal of Fuzhou University (Natural Science), 2020, 48(5):602-609. (in Chinese)
    [14] 石运良, 罗宇, 陈正科. 基于GBDT算法的焊缝北面熔宽预测[J]. 热加工工艺, 2021, 50(17):110-114.SHI Yunliang, LUO Yu, CHEN Zhengke. Prediction of weld backside molten pool width based on GBDT algorithm[J]. Hot Working Technology, 2021, 50(17):110-114. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王建民,叶钰蓉,饶超敏,卓仁杰,柳俊哲.基于GBDT算法的混凝土叠合面黏结强度预测分析[J].建筑材料学报,2023,26(2):150-155

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-10
  • 最后修改日期:2022-01-10
  • 在线发布日期: 2023-03-06
文章二维码