定向钢纤维增强水泥基复合材料断裂细观数值模拟
作者:
作者单位:

河北工业大学 土木与交通学院, 天津 300401

作者简介:

卿龙邦(1982—),男,湖北天门人,河北工业大学教授,博士生导师,博士. E-mail: qing@hebut.edu.cn

通讯作者:

卿龙邦(1982—),男,湖北天门人,河北工业大学教授,博士生导师,博士. E-mail: qing@hebut.edu.cn

中图分类号:

TB332

基金项目:

国家自然科学基金资助项目(52022027, 52078180);河北省自然科学基金资助项目(E2022202141, E2020202151);河北省高等学校科学技术研究重点项目(ZD2019072, ZD2020190)


Meso-Numerical Simulation on Fracture of Aligned Steel Fiber Reinforced Cementitious Composites
Author:
Affiliation:

School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用随机生成算法投放钢纤维,建立了随机乱向、定向钢纤维增强水泥基复合材料(SFRC、ASFRC)三点弯曲梁细观有限元数值模型,计算了不同纤维掺量下SFRC试件和ASFRC试件加载断裂的全过程,分析了三点弯曲梁开裂截面处的纤维应力,研究了定向钢纤维的细观增强机理. 结果表明:SFRC试件和ASFRC试件荷载-裂缝张开口位移全曲线的模拟值与试验值符合较好,峰值荷载的误差在10%以内;SFRC试件和ASFRC试件的峰值荷载与纤维合力的最大值均随着纤维掺量的增加而增大,当纤维掺量为0.8%、1.2%、2.0%时,ASFRC试件的峰值荷载较SFRC试件提高了75%、111%、141%,纤维合力的最大值较SFRC试件增大了202%、144%、127%;定向钢纤维可以有效改善水泥基复合材料的断裂性能,显著提高钢纤维的利用率,延缓裂缝的扩展.

    Abstract:

    A random generation algorithm was used to steel fiber, and then the meso-scale finite element numerical mode of three point bending beam of random and aligned steel fiber reinforced cementitious composites (SFRC, ASFRC) were established. The whole process of loading and fracture of SFRC specimens and ASFRC specimens with different fiber contents were calculated. The fiber stress at the cracked section of the three point bending beam was analyzed, and the meso-scale reinforcement mechanism of aligned steel fiber was studied. The results show that the whole load-crack opening displacement curves of SFRC specimens and ASFRC specimens obtained from test and numerical simulation are in good agreement and the error of the peak load is within 10%. The peak load and the maximum fiber force of the two kinds of specimens both increase with the increase of fiber content. When the fiber content is 0.8%, 1.2% and 2.0%, the peak load of ASFRC specimens increased by 75%, 111% and 141% compared to SFRC specimens, and the maximum fiber force of ASFRC specimens increased by 202%, 144%, and 127% compared with SFRC specimens. Aligned steel fiber can effectively improve the fracture performance of cementitious composites, significantly increase the fiber efficiency, and delay the propagation of cracks.

    表 3 水泥砂浆基体的材料力学参数Table 3 Material mechanical parameters of cement mortar matrix
    表 4 试验与模拟所得SFRC试件和ASFRC试件的峰值荷载Table 4 Tested and simulated peak loads of SFRC and ASFRC specimens
    表 1 砂浆基体的配合比Table 1 Mix proportions of mortar matrix
    图1 不同角度范围内的随机乱向钢纤维细观数值模型Fig.1 Meso-numerical model of random steel fibers in different angle ranges
    图2 定向钢纤维细观数值模型Fig.2 Meso-numerical model of aligned steel fibers
    图3 三点弯曲梁模型跨中处钢纤维的分布Fig.3 Distribution of steel fibers in the middle of the three point bending beam model
    图4 倾斜纤维加载示意图Fig.4 Schematic diagram of inclined steel fiber loading(size: mm)
    图5 钢纤维的拉拔力-位移曲线Fig.5 Curves of pull-out force-displacement of steel fiber
    图6 基于拉拔力-位移曲线确定的钢纤维等效应力-应变关系曲线Fig.6 Determination of steel fiber stress-strain curves base on pull-out force-displacement curves
    图7 ASFRC试件的制备装置Fig.7 Preparation device of ASFRC specimen[8]
    图8 断裂试验加载示意图Fig.8 Loading schematic diagram of fracture test(size: mm)
    图9 SFRC试件和ASFRC试件的荷载-裂缝张开口位移曲线Fig.9 P-CMOD curves of SFRC and ASFRC specimens
    图10 试件开裂破坏图及跨中开裂截面处的钢纤维分布Fig.10 Cracking failure diagram of the specimen and distribution of steel fibers at the cracked section in the middle
    图12 试件跨中开裂截面处纤维的应力分布图Fig.12 Fiber stress distribution diagram on cracked surface in mid-span of specimens
    图13 试件跨中开裂截面处的纤维合力-荷载曲线图Fig.13 F-P curves of fibers on cracked surface in mid-span of specimens
    图11 不同加载时刻ASFRC试件的主拉应力方向应力云图Fig.11 σx stress cloud diagram of ASFRC specimen at different loading moments
    表 2 钢纤维的特征参数Table 2 Characteristic parameters of steel fibers
    参考文献
    [1] 徐平, 郑满奎, 王超, 等. 考虑尺寸及纤维掺量影响的高强混凝土断裂能试验研究[J]. 硅酸盐通报, 2020, 39(11):3488-3495.XU Ping, ZHENG Mankui, WANG Chao, et al. Experimental study on fracture energy of high strength concrete considering the influence of size and fiber content[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11):3488-3495. (in Chinese)
    [2] ZHANG X X, ELAZIM A, RUIZ G, et al. Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates[J]. International Journal of Impact Engineering, 2014, 71:89-96.
    [3] GAO D Y, ZHANG T Y. Fracture characteristics of steel fiber reinforced high strength concrete under three-point bending[J]. Journal of the Chinese Ceramic Society, 2007, 35(12):1630-1635.
    [4] FU S Y, LAUKE B. Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers[J]. Composites Science and Technology, 1996, 56(10):1179-1190.
    [5] BRANDT A M. On the optimal direction of short metal fibres in brittle matrix composites[J]. Journal of Materials Science, 1985, 20(11):3831-3841.
    [6] ABRISHAMBAF A, BARROS J A, CUNHA V M. Relation between fibre distribution and post-cracking behaviour in steel fibre reinforced self-compacting concrete panels[J]. Cement Concrete Research, 2013, 51:51-66.
    [7] 慕儒, 邱欣, 赵全明, 等. 单向分布钢纤维增强水泥基复合材料(I):钢纤维方向控制[J]. 建筑材料学报, 2015, 18(2):208-213.MU Ru, QIU Xin, ZHAO Quanming, et al. Aligned steel fiber reinforced cement based composites(I):Orientation control of steel fibers[J]. Journal of Building Materials, 2015, 18(2):208-213. (in Chinese)
    [8] MU R, LI H, QING L B, et al. Aligning steel fibers in cement mortar using electro-magnetic field[J]. Construction and Building Materials, 2017, 131:309-316.
    [9] 慕儒, 王成, 李辉, 等. 单向分布钢纤维增强水泥基复合材料(III):断裂性能[J]. 建筑材料学报, 2016, 19(1):78-82.MU Ru, WANG Cheng, LI Hui, et al. Aligned steel fiber reinforced cement based composites (III):Fracture properties[J]. Journal of Building Materials, 2016, 19(1):78-82. (in Chinese)
    [10] WIJFFELS M, WOLFS R, SUIKER A, et al. Magnetic orientation of steel fibres in self-compacting concrete beams:Effect on failure behavior[J]. Cement and Concrete Composites, 2017, 80:342-355.
    [11] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12):12214-12219.WANG Zhewei, ZHOU Huafei, XIE Ziling. Acoustic emission characteristics of aligned steel fiber reinforced geopolymer subjected to bending failure[J]. Materials Reports, 2021, 35(12):12214-12219. (in Chinese)
    [12] 汪洋, 徐金霞, 蒋林华, 等. 磁场诱导定向碳纤维增强水泥砂浆的力学性能[J]. 复合材料学报, 2019, 36(11):2726-2733.WANG Yang, XU Jinxia, JIANG Linhua, et al. Mechanical properties of cement mortar reinforced with aligned fibers by magnetic field[J]. Acta Materiae Compositae Sinica, 2019, 36(11):2726-2733. (in Chinese)
    [13] WANG Z L, WU L P, WANG J G. A study of constitutive relation and dynamic failure for SFRC in compression[J]. Construction and Building Materials, 2010, 24(8):1359-1363.
    [14] WANG Z L, KONIETZKY H, HUANG R Y. Elastic-plastic-hydrodynamic analysis of crater blasting in steel fiber reinforced concrete[J]. Theoretical and Applied Fracture Mechanics, 2009, 52(2):111-116.
    [15] SOETENS T, MATTHYS S. Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete[J]. Construction and Building Materials, 2014, 73(30):458-471.
    [16] FANG Q, ZHANG J. Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading[J] Construction and Building Materials, 2013, 44:118-132.
    [17] YU R C, CIFUENTES H, RIVERO I, et al. Dynamic fracture behavior in fiber-reinforced cementitious composites[J]. Journal of the Mechanics and Physics of Solids, 2016, 93:135-152.
    [18] 喻渴来, 卿龙邦, 王苗. 定向钢纤维增强水泥基复合材料断裂特性模拟分析[J]. 硅酸盐通报, 2018, 37(3):810-817.YU Kelai, QING Longbang, WANG Miao. Simulation analysis of fracture characteristics for aligned steel fiber reinforced cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3):810-817. (in Chinese)
    [19] SPRING D W, PAULINO G H. A growing library of three-dimensional cohesive elements for use in ABAQUS[J]. Engineering Fracture Mechanics, 2014, 126:190-216.
    [20] PARK K, CHOI H, PAULINO G H. Assessment of cohesive traction-separation relationships in ABAQUS:A comparative study[J]. Mechanics Research Communications, 2016, 78:71-78.
    [21] POBLETE F R, MONDAL K, MA Y, et al. Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass[J]. Composite Structures, 2022, 279:47-59.
    [22] PARK K, PAULION G H. Cohesive zone models:A critical review of traction-separation relationships across fracture surfaces[J]. Applied Mechanics Reviews, 2015, 64(6):061002.
    [23] CUNHA V M, BARROS J A, SENA-CRUZ J M. A finite element model with discrete embedded elements for fiber reinforced composites[J]. Computers and Structures, 2012, 94/95:22-33.
    [24] CUNHA V M, BARROS J, SENA-CRUZ J. An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete[J]. Cement and Concrete Research, 2011, 41(1):64-76.
    [25] ABRISHAMBAF A, CUNHA V M, BARROS J A. A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels[J]. Engineering Fracture Mechanics, 2016, 162:1-20.
    [26] LEE Y, KANG S T, KIM J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix [J]. Construction and Building Materials, 2010, 24(10):2030-2041.
    [27] NAAMAN A E, NAMUR G G, ALWAN J M, et al. Fiber pullout and bond slip. I:Analytical study[J]. Journal of Structural Engineering, 1991, 117(9):2769-2790.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卿龙邦,杨子美,慕儒,张金鑫,籍晓凯.定向钢纤维增强水泥基复合材料断裂细观数值模拟[J].建筑材料学报,2023,26(2):111-121

复制
分享
文章指标
  • 点击次数:295
  • 下载次数: 701
  • HTML阅读次数: 39
  • 引用次数: 0
历史
  • 收稿日期:2021-12-03
  • 最后修改日期:2022-02-21
  • 在线发布日期: 2023-03-06
文章二维码