海上风电钢管桩石墨烯涂层的防腐性能
作者:
作者单位:

浙江华东工程咨询有限公司,浙江 杭州 311122

作者简介:

李 辉(1983—), 男, 河南驻马店人, 浙江华东工程咨询有限公司工程师,学士.E-mail: li_h6@hdec.com

通讯作者:

李 辉(1983—), 男, 河南驻马店人, 浙江华东工程咨询有限公司工程师,学士.E-mail: li_h6@hdec.com

中图分类号:

P752

基金项目:

国家自然科学基金资助项目(52179122)


Corrosion Resistance of Graphene Coating for Steel Pipe Pile in Offshore Wind Farm
Author:
Affiliation:

Zhejiang Huadong Engineering Consulting Co., Ltd., Hangzhou 311122, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究了常规重防腐涂层(常规涂层)和石墨烯重防腐涂层(石墨烯涂层)的附着力和电化学性能,并利用数值模拟研究了牺牲阳极和石墨烯涂层防护下的海上风电钢管桩的防腐性能.结果表明:石墨烯涂层的附着力明显大于常规涂层;石墨烯涂层的腐蚀电流密度比常规涂层降低了1个数量级,且其腐蚀电位正移,表明石墨烯涂层的防腐效果较好;与常规涂层相比,石墨烯涂层可显著减小钢管桩表面的腐蚀速率,提高涂层的阴极保护作用.

    Abstract:

    The adhesion and electrochemical properties of conventional heavy-duty anti-corrosion coating(conventional coating) and graphene heavy-duty anti-corrosion coating(graphene coating) were studied. The corrosion resistance of steel pipe piles in offshore wind farm protected by sacrificial anode and graphene coating was studied by numerical simulation method. The results show that the adhesion of graphene coating is significantly greater than that of conventional coating. The corrosion current density of graphene coating is reduced by one order of magnitude compared with that of conventional coating, and its corrosion potential rises, indicating that the anti-corrosion effect of graphene coating is better. Compared with the conventional coating, the use of graphene coating can significantly reduce the corrosion rate of steel pipe pile and improve the cathodic protection effect of the coating.

    表 1 常规涂层和石墨烯涂层的附着力Table 1 Adhesion of conventional coating and graphene coating
    表 3 模型计算参数Table 3 Model calculation parameters
    图1 数值模型Fig.1 Numerical model(size: m)
    图2 网格划分图Fig.2 Diagram of meshing
    图3 牺牲阳极半径随服役时间的变化Fig.3 Variation of sacrificial anode radius with service time
    图4 牺牲阳极半径的损耗速率Fig.4 Loss rate of sacrificial anode radius
    图5 海水区钢管桩的表面电位Fig.5 Potential on the surface of steel pipe pile in seawater
    图6 钢管桩表面的局部电流密度Fig.6 Local current density on the surface of steel pipe pile
    表 2 常规涂层和石墨烯涂层的腐蚀电流密度和腐蚀电位Table 2 Corrosion current density and corrosion potential of conventional coating and graphene coating
    参考文献
    [1] 王国粹, 王伟, 杨敏. 3.6 MW海上风机单桩基础设计与分析[J]. 岩土工程学报, 2011, 33(增刊2): 95-100.WANG Guocui, WANG Wei, YANG Min. Design and analysis of monopile foundation for 3.6 MW offshore wind turbine[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Suppl 2):95-100. (in Chinese)
    [2] 周龙. 砂土中海上风电超大直径钢管桩桩土相互作用研究[D]. 天津:天津大学, 2014.ZHOU Long. Research on the interaction between pile and soil of super-large diameter steel pipe piles for offshore wind farm in sand[D]. Tianjin:Tianjin University, 2014. (in Chinese)
    [3] 侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31(12):1326-1331.HOU Baorong, ZHANG Dun, WANG Peng. Marine corrosion and protection:Current status and prospect[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12):1326-1331. (in Chinese)
    [4] 张贤慧, 方大庆, 高波, 等. 海洋钢结构用环氧玻璃鳞片涂料的开发[J]. 材料开发与应用, 2015, 30(1):15-19.ZHANG Xianhui, FANG Daqing, GAO Bo, et al. Development of epoxy glass flakes coatings for off-shore steel structures[J]. Development and Application of Materials, 2015, 30(1):15-19. (in Chinese)
    [5] 黄一杰, 李晓蔚, 张锡成, 等. 环氧涂层钢筋与海水珊瑚混凝土的黏结性能[J]. 建筑材料学报, 2020, 23(5):1086-1092.HUANG Yijie, LI Xiaowei, ZHANG Xicheng, et al. Bond properties of epoxy-coated reinforcement to seawater coral concrete[J]. Journal of Building Materials, 2020, 23(5):1086-1092. (in Chinese)
    [6] 丁纪恒. 水性环氧树脂的制备及其防腐性能研究[D]. 南京:南京理工大学, 2016.DING Jiheng. The study on preparation of waterborne epoxy resin and its anti-corrosion property[D]. Nanjing:Nanjing University of Science and Technology, 2016. (in Chinese)
    [7] 刘斌, 李瑛, 林海潮, 等. 防腐蚀涂层失效行为研究进展[J]. 腐蚀科学与防护技术, 2001, 13(5):305-307.LIU Bin, LI Ying, LIN Haichao, et al. Progress in study on degradation of anti-corrosion coatings[J]. Corrosion Science and Protection Technology, 2001, 13(5):305-307. (in Chinese)
    [8] 方志刚, 黄一. 有机涂层在深海环境中的失效行为研究[J]. 腐蚀科学与防护技术, 2010, 22(6): 518-520.FANG Zhigang, HUANG Yi. Degradation behavior of organic coatings in a simulated deep sea environment[J]. Corrosion Science and Protection Technology, 2010, 22(6): 518-520. (in Chinese)
    [9] 侯保荣. 海洋钢结构浪花飞溅区腐蚀控制技术[M]. 北京:科学出版社, 2011:2-4.HOU Baorong. Corrosion control technology in spray splash zone of offshore steel structure[M]. Beijing:Science Press, 2011:2-4. (in Chinese)
    [10] 李荣俊. 重防腐涂料与涂装[M]. 北京:化学工业出版社, 2013:7-9.LI Rongjun. Heavy-duty coatings and application[M]. Beijing:Chemical Industry Press, 2013:7-9. (in Chinese)
    [11] 张晏清. 钢筋表面防腐蚀涂层的性能[J]. 建筑材料学报, 2005, 8(5):577-579.ZHANG Yanqing. Study of corrosion resistance coatings for steel bar[J]. Journal of Building Materials, 2005, 8(5):577-579. (in Chinese)
    [12] 商怀帅, 王玮钊, 刘孝华, 等. 石墨烯/环氧涂层钢筋与混凝土的黏结性能[J]. 建筑材料学报, 2021, 24(2):348-354.SHANG Huaishuai, WANG Weizhao, LIU Xiaohua, et al. Bond properties of graphene/epoxy coated steel bars and concrete[J]. Journal of Building Materials, 2021, 24(2):348-354. (in Chinese)
    [13] 丁新艳, 刘新群, 谭帅霞, 等. 涂膜附着力测试的探讨与建议[J]. 涂料工业, 2014, 44(2):60-63.DING Xinyan, LIU Xinqun, TAN Shuaixia, et al. Discussion and suggestions on film adhesion test[J]. Paint and Coatings Industry, 2014, 44(2):60-63. (in Chinese)
    [14] 张瑞珠, 严大考, 刘晓东, 等. 风电用环氧玻璃鳞片涂层防腐性能的电化学研究[J]. 建筑材料学报, 2017, 20(1):135-138.ZHANG Ruizhu, YAN Dakao, LIU Xiaodong, et al. Electrochemical performance of epoxy glass flake coating for marine wind power[J]. Journal of Building Materials, 2017, 20(1):135-138. (in Chinese)
    [15] 吴丽蓉, 胡学文, 许崇武. 用EIS快速评估有机涂层防护性能的方法[J]. 腐蚀科学与防护技术, 2000, 12(3):182-184.WU Lirong, HU Xuewen, XU Chongwu. Methods for evaluating the performance of protective coatings with EIS [J]. Corrosion Science and Protection Technology, 2000, 12(3):182-184. (in Chinese)
    [16] 孙垚垚, 宋家乐, 郑斌, 等. 石墨烯防腐涂层研究进展[J]. 无机盐工业, 2021, 53(11):30-35.SUN Yaoyao, SONG Jiale, ZHENG Bin, et al. Research progress of graphene anticorrosive coating[J]. Inorganic Chemicals Industry, 2021, 53(11):30-35. (in Chinese)
    [17] 周楠, 陈浩, 丁纪恒, 等. 石墨烯的分散及其在防腐涂层中的应用[J]. 中国涂料, 2017, 32(2):6-10.ZHOU Nan, CHEN Hao, DING Jiheng, et al. Efficient dispersion of graphene and its application in anticorrosion coatings[J]. China Coatings, 2017, 32(2):6-10. (in Chinese)
    [18] 谢于辉. 氧化石墨烯在金属防腐蚀涂层中的应用及分散机理研究[D]. 广州:华南理工大学, 2019.XIE Yuhui. Applications of graphene oxide in anti-corrosion coatings for metals and its dispersion mechanism[D]. Guangzhou:South China University of Technology, 2019. (in Chinese)
    [19] 张双红, 杨波, 孔纲, 等. 石墨烯防腐蚀涂料在海洋工程中的应用研究[J]. 材料保护, 2017, 50(10):65-69.ZHANG Shuanghong, YANG Bo, KONG Gang, et al. Application research on graphene anticorrosive coatings in ocean engineering [J]. Materials Protection, 2017, 50(10):65-69. (in Chinese)
    [20] 赵煜. 钢管桩滨海码头防腐蚀体系的二次修复[J]. 材料开发与应用, 2004, 19(6):26-29.ZHAO Yu. Renovation of the anti-corrosion system on wharf steel pillings[J]. Development and Application of Materials, 2004, 19(6):26-29. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李辉,赵凯.海上风电钢管桩石墨烯涂层的防腐性能[J].建筑材料学报,2023,26(2):200-205

复制
分享
文章指标
  • 点击次数:161
  • 下载次数: 426
  • HTML阅读次数: 25
  • 引用次数: 0
历史
  • 收稿日期:2021-12-02
  • 最后修改日期:2022-02-20
  • 在线发布日期: 2023-03-06
文章二维码