基于X-CT的蒸养大掺量矿物掺合料砂浆孔结构
作者:
作者单位:

1.河海大学 土木与交通学院,江苏 南京 210098;2.浙江交工集团股份有限公司,浙江 杭州 310051;3.金陵科技学院 建筑工程学院,江苏 南京 211169

作者简介:

郭玉柱(1991—),男,山西临汾人,河海大学博士生. E-mail:guoyuzhu5185@163.com

通讯作者:

陈徐东(1985—),男,江苏南通人,河海大学教授,博士生导师,博士. E-mail:cxdong1985@163.com

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(51979090);中央高校基本科研业务费专项资金资助项目(B200202076)


Pore Structure of Steam Cured High Volume Mineral Admixture Mortar Based on X-CT Technology
Author:
Affiliation:

1.College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;2.Zhejiang Communications Construction Group Co., Ltd., Hangzhou 310051, China;3.Architecture Engineering Institute, Jinling Institute of Technology, Nanjing 211169, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    采用80 ℃下恒温12 h的蒸养制度对砂浆进行了蒸养,蒸养结束后采用自然养护、水养和标养3种方式进行后续养护,同时设置了全程标养砂浆作为对照组.研究了不同养护制度下砂浆的早期强度发展规律,并基于X射线计算机断层扫描(X-CT)技术对砂浆的孔结构特征进行了分析.结果表明:80 ℃下恒温12 h蒸养使砂浆孔隙率增大,最终导致蒸养砂浆28 d抗压强度低于全程标养砂浆;蒸养砂浆抗压强度随孔隙率增大而快速降低,两者之间呈现良好的线性关系;蒸养后水养和标养可以有效降低蒸养砂浆的孔隙率,使其28 d抗压强度高于蒸养后自然养护的砂浆;砂浆孔隙的孔体积与球形度存在明显的负相关关系,且蒸养会使孔体积-球形度分布规律中的异常值增多.

    Abstract:

    The mortar was steam cured using a constant temperature of 80 ℃ for 12 h steam curing system. After the completion of steam curing, three types of subsequent curing were used: natural curing, water curing and standard curing, while the whole standard cured mortar was set as a comparison group. The early strength development patterns of mortars under different curing regimes were studied, and the pore structure characteristics of mortar were analyzed based on X-ray computed tomography (X-CT) technique. The results show that steam curing at a constant temperature of 80 ℃ for 12 h increases the porosity of the mortar, which eventually leads to a lower 28 d compressive strength of the steam cured mortar than that of the whole standard cured mortar. The compressive strength of the steam cured mortar decreases rapidly with the increase of porosity, and a good linear relationship is shown between them. The water curing and standard curing after steam curing can effectively reduce the porosity of the steam cured mortar and make its 28 d compressive strength higher than that of the mortar naturally cured after steam curing. In addition, there is an obviously negative correlation between the pore volume and sphericity of mortar pores, and the steam curing system will increase the outliers in this distribution law of pore volume-sphericity.

    表 1 胶凝材料的化学组成Table 1 Chemical composition of cementitious materials
    图1 砂子的粒径级配Fig.1 Grading curve of sand particle size
    图2 蒸养制度Fig.2 Steam curing system
    图3 CT图像处理流程Fig.3 CT image processing flow
    图4 沿竖直方向的二维孔隙率Fig.4 2D porosity along vertical direction
    图5 砂浆不同龄期抗压强度Fig.5 Compressive strength of mortar at different ages
    图6 砂浆28 d抗压强度与孔隙率的关系Fig.6 Relationship between 28 d compressive strength and porosity of mortar
    图7 基于X-CT的孔径分布图Fig.7 Pore diameter distribution diagram based on X-CT
    图8 砂浆孔体积分布Fig.8 Pore volume distribution of mortars
    图9 砂浆孔隙球形度与孔体积的关系Fig.9 Relationship between sphericity and pore volume of mortar
    图10 砂浆孔隙球形度分布Fig.10 Sphericity distribution of mortar pore
    参考文献
    [1] 娄本星, 胡少伟, 范向前, 等. 不同养护温度下蒸养混凝土断裂性能研究[J]. 建筑材料学报, 2021, 24(6):1163-1168.
    [2] KIM J K, HAN S H, SONG Y C. Effect of temperature and aging on the mechanical properties of concrete:Part I. Experimental results[J]. Cement and Concrete Research, 2002, 32(7):1087-1094.
    [3] CASSAGNABERE F, MOURET M, ESCADEILLAS G. Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties[J]. Cement and Concrete Research, 2009, 39(12):1164-1173.
    [4] KJELLSEN K O. Heat curing and post-heat curing regimes of high-performance concrete:Influence on microstructure and CSH composition[J]. Cement and Concrete Research, 1996, 26(2):295-307.
    [5] LOTHENBACH B, WINNEFELD F, ALDER C, et al. Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes[J]. Cement and Concrete Research, 2007, 37(4):483-491.
    [6] 马昆林, 龙广成, 谢友均. 蒸养混凝土轨道板劣化机理研究[J]. 铁道学报, 2018, 40(8):116-121.
    [7] CAMPBELL G M, DETWILER R J. Development of mix designs for strength and durability of steam-cured concrete[J]. Concrete International, 1993, 15(7):37-39.
    [8] 贺智敏, 龙广成, 谢友均, 等. 蒸养混凝土的表层伤损效应[J]. 建筑材料学报, 2014, 17(6):994-1000,1008.
    [9] BINGOL A F, TOHUMCU I. Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume[J]. Materials and Design, 2013, 51:12-18.
    [10] 曾俊杰, 水中和, 王胜年. 掺偏高岭土和矿粉蒸养高强砂浆早期水化特征和孔结构研究[J]. 中南大学学报(自然科学版), 2014, 45(8):2857-2863.
    [11] 胡益彰. 蒸养条件下大掺量矿物掺合料混凝土的性能研究[D]. 济南:山东大学, 2016.
    [12] 李雪梅, 齐莉莉. 矿物掺合料对管片蒸养混凝土强度的影响[J]. 低温建筑技术, 2018, 40(7):14-15,18.
    [13] 李亚东, 路征远, 裴磊, 等. 后续养护制度对高强混凝土力学性能的影响[J]. 硅酸盐通报, 2018, 37(7):2331-2335.
    [14] 杜红秀, 樊亚男. 基于X-CT的C60高性能混凝土高温细观结构损伤研究[J]. 建筑材料学报, 2020, 23(1):210-215.
    [15] 李天庆, 张毅, 刘志, 等. Snake模型综述[J]. 计算机工程, 2005,31(9):1-3.
    [16] KASS M, WITKIN A, TERZOPOULOS D. Snakes:active contour models[J]. International Journal of Computer Vision, 1988, 1 (4):321-331.
    [17] 李培华, 张田文. 主动轮廓线模型(蛇模型)综述[J]. 软件学报, 2000,11(6):751-757.
    [18] 韩松, 崔叶富, 郑玉飞, 等. 低水胶比水泥浆体的力学性能与水泥石微结构[J]. 硅酸盐学报, 2019, 47(2):153-160.
    [19] VANDAMME M, ULM F J, FONOLLOSA P. Nanogranular packing of C-S-H at substochiometric conditions[J]. Cement and Concrete Research, 2010, 40(1):14-26.
    [20] 刘友华. 蒸汽养护对水泥净浆和砂浆肿胀变形特性的影响[D]. 长沙:中南大学, 2008.
    [21] HE Y J, MAO R T, LÜ L N, et al. Hydration products of cement-silica fume-quartz powder mixture under different curing regimes[J]. Journal of Wuhan University of Technology(Materials Science), 2017, 32(3):598-602.
    [22] SHEN P L, LÜ L N, HE Y J, et al. The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 118:1-13.
    [23] 熊蓉蓉, 龙广成, 谢友均, 等. 矿物掺合料对蒸养高强浆体抗压强度及孔结构的影响[J]. 硅酸盐学报, 2017, 45(2):175-181.
    [24] HILAL A A, THOM N H, DAWSON A R. On entrained pore size distribution of foamed concrete[J]. Construction and Building Materials, 2015, 75:227-233.
    [25] 陈洁静, 秦拥军, 肖建庄, 等. 基于CT技术的掺锂渣再生混凝土孔隙特征研究[J]. 建筑材料学报, 2021, 24(6):1179-1186.
    [26] 张振, 饶烽瑞, 叶观宝, 等. 基于X-CT技术的气泡轻质土孔隙结构研究[J]. 建筑材料学报, 2020, 23(5):1104-1112.
    [27] GUO Y Z, CHEN X D, CHEN B, et al. Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography[J]. Construction and Building Materials, 2021, 273:121773.
    相似文献
    引证文献
引用本文

郭玉柱,陈徐东,宁英杰,陈育志.基于X-CT的蒸养大掺量矿物掺合料砂浆孔结构[J].建筑材料学报,2022,25(9):885-892

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-26
  • 最后修改日期:2021-09-30
  • 在线发布日期: 2022-09-30
文章二维码