植物纤维金属层合板的抗低速冲击性能
作者:
作者单位:

同济大学 航空航天与力学学院,上海 200092

作者简介:

赵艺桥(1997—),女,重庆彭水人,同济大学硕士生.E-mail:1930904@tongji.edu.cn

通讯作者:

于 涛(1980—),男,吉林吉林人,同济大学教授,博士生导师,博士. E-mail:yutao@tongji.edu.cn

中图分类号:

TU599

基金项目:

国家自然科学基金资助项目(11872279)


Low Velocity Impact Performance of Plant Fiber Metal Laminates
Author:
Affiliation:

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了提升植物纤维增强复合材料的冲击性能,采用亚麻纤维增强环氧树脂(FFRP)与具有较高韧性的铝合金薄板进行层间混杂,制得亚麻纤维铝合金层合板(FFML);另外,为了提升铝合金薄板表面积及其与树脂基体的界面结合能力,对铝合金薄板进行了一系列表面处理,并与FFRP层合板进行了对比试验.结果表明:铝合金薄板可以有效提升植物纤维增强复合材料的初始刚度、最大冲击载荷及吸收能,并使其破坏模式从脆性破坏转变为塑性破坏;与FFRP层合板相比,经表面处理过的FFML最大冲击载荷与吸收能量分别提升了136%和58%,损伤面积下降了84%.

    Abstract:

    Flax fiber fabric and aluminum alloy sheet with relative high toughness were hybridized interlaminar in order to fabricate plant fiber metal laminate(FML), which promoted the impact properties of the composites. A series of surface treatments were carried out on aluminum alloy sheet to increase the specific surface area and enhance the interlayer bonding ability with matrix. The results show that the metal layer can effectively improve the initial stiffness, maximum impact load and energy absorption capacity of the composite, and change the failure mode of the composite from brittle failure to plastic failure. Compared with the flax fiber reinforced composite(FFRP)laminate, the maximum impact load and absorbed energy of fabricate flax fiber metal laminate(FFML) increase by 136% and 58%, respectively, and the damage area decreases by 84%.

    表 4 接触相互作用特征Table 4 Contact interaction properties
    表 3 FFRP正交各向异性弹性参数Table 3 Orthotropic elasticity data of FFRP
    表 2 铝合金Al2040-T3薄板各向同性硬化参数Table 2 Isotropic hardening data for the Al2040-T3
    图1 FFML与FFRP层合板的铺层与成型工艺示意图Fig.1 Ply diagram and linear diagram of preparation of FFML and FFRP laminate
    图2 FFRP的线性损伤演化Fig.2 Linear damage evolution of FFRP
    图3 典型网格划分方法Fig.3 Typical mesh generation method
    图4 铝合金表面微观形貌Fig.4 Microstructure of the Al alloy
    图5 FFML中铝合金-亚麻纤维层界面形貌Fig.5 Microstructure of Al-FFRP interface of FFML
    图6 3种层合板在10 J冲击能量下的典型冲击载荷-位移曲线Fig.6 Typical impact force-displacement curves of three type of laminates subjected to 10 J impact energy
    图7 冲击后3种层合板下表面和横截面的损伤形貌Fig.7 Damage morphology for bottom and cross section of three type of laminates after impacting
    图8 3种层合板在10 J冲击能量下的损伤面积及吸收能量Fig.8 Damage area and absorbed energy of three type of laminates subjected to 10 J impact energy
    图9 有限元模拟经表面处理后FFML在10 J冲击能量下的破坏形貌Fig.9 Simulation results of failure modes for treated FFML subjected to 10 J impact energy
    表 5 经表面处理后FFML在10 J冲击能量下的性能Table 5 Performance of treated FFML subjected to 10 J impact energy
    表 1 FFML与FFRP层合板的尺寸参数Table 1 Dimension parameters of FFML and FFRP laminate
    参考文献
    [1] AHMAD F, CHOI H S, PARK M K. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties[J]. Macromolecular Materials and Engineering, 2015, 300(1):10-24.
    [2] BOURMAUD A, BEAUGRAND J, SHAH D U, et al. Towards the design of high-performance plant fibre composites[J].Progress in Materials Science, 2018, 97:347-408.
    [3] 朱泽华,朱德滨,程承.水泥基植物纤维复合材料耐水性研究[J].新型建筑材料, 2020, 47(8):103-106.ZHU Zehua, ZHU Debin, CHENG Cheng. Experimental research on water resistance of cement-based plant fiber composites[J]. New Building Materials, 2020, 47(8):103-106.(in Chinese)
    [4] 陆秀丽.植物纤维增强水泥基复合材料研究进展[J].低温建筑技术,2020,42(8):28-31.LU Xiuli. Research progress of plant fiber cement-based composite material[J]. Low Temperature Architecture Technology, 2020, 42(8):28-31.(in Chinese)
    [5] 马东方,马伯翰,张幸锵.冲击荷载下植物纤维增强高聚物复合材料的力学性能[J].高压物理学报,2019,33(2):117-124.MA Dongfang, MA Bohan, ZHANG Xingqiang. Mechanical properties of natural fiber reinforced polymer composites under impact loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2):117-124. (in Chinese)
    [6] OHTA T, MORII T, HAMADA H. Mechanical property and fracture characteristics of glass and jute fiber reinforced polypropylene hybrid composites[J]. Journal of Materials Engineering, 2009(Suppl 2):387-391, 395. (in Chinese)
    [7] 胡静,蔡雄峰,胡昂,等.金属网对玻璃纤维增强复合材料低速冲击损伤特性的影响[J].复合材料科学与工程,2021(1):58-64.HU Jing, CAI Xiongfeng, HU Ang, et al. Influence of metal mesh on low-velocity impact damage characteristics of glass fiber reinforced composites[J]. Composites Science and Engineering,2021(1):58-64. (in Chinese)
    [8] CANTWELL W J, MORTON J. The impact resistance of composite materials-A review[J]. Composites, 1991, 22(5), 347-362.
    [9] DHAKAL H N, ZHANG Z Y, BENNETT N, et al. Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites:Influence of impactor geometry and impact velocity[J]. Composite Structures, 2012, 94(9):2756-2763.
    [10] PETRUCCI R, SANTULLI C, PUGLIA D, et al. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion[J]. Materials and Design, 2013, 49:728-735.
    [11] SANJAY M R, MADHU P, JAWAID M, et al. Characterization and properties of natural fiber polymer composites:A comprehensive review[J]. Journal of Cleaner Production, 2018, 172:566-581.
    [12] LEE H S, CHO D, HAN S O. Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites[J]. Macromolecular Research, 2008, 16(5):411-417.
    [13] RUKSAKULPIWAT Y, SRIDEE J, SUPPAKARN N, et al. Improvement of impact property of natural fiber-polypropylene composite by using natural rubber and EPDM rubber[J]. Composites Part B:Engineering, 2009, 40(7):619-622.
    [14] VLOT A. Impact loading on fibre metal laminates[J]. International Journal of Impact Engineering, 1996, 18(3):291-307.
    [15] MACHADO GOMES VIEIRA L, DOS SANTOS J C, HALLAK PANZERA T, et al. Novel fibre metal laminate sandwich composite structure with sisal woven core[J]. Industrial Crops and Products, 2017, 99:189-195.
    [16] PROLONGO S G, URENA A. Effect of surface pre-treatment on the adhesive strength of epoxy-aluminium joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(1):23-31.
    [17] 公晋芳.硅藻土/聚丙烯复合材料的吸声性能研究[J].建筑材料学报,2018,21(4):678-682.GONG Jinfang. Investigation of sound absorption properties research of diatomite/polypropylene composite materials[J]. Journal of Building Materials, 2018, 21(4) :678-682. (in Chinese)
    [18] 杨建明,郭思彤,徐新华,等.气凝胶绝热板热工性能研究[J].建筑材料学报,2019,22(5):786-791.YANG Jianming, GUO Sitong, XU Xinhua, et al. Thermal performance study of aerogel insulating panels[J]. Journal of Building Materials,2019,22(5):786-791. (in Chinese)
    [19] 余煜玺,马锐,王贯春,等.高比表面积、低密度块状Al2O3气凝胶的制备及表征[J].材料工程,2019,47(12):136-142.YU Yuxi, MA Rui, WANG Guanchun, et al. Preparation and characterization of Al2O3 bulk aerogel with high specific surface area and low density[J]. Journal of Materials Engineering,2019,47(12):136-142. (in Chinese)
    [20] 汪亮, 宣天鹏, 周赟, 等. 铝合金表面硅烷处理技术的研究现状[J].电镀与环保, 2012, 32(6):3-6.WANG Liang, XUAN Tianpeng, ZHOU Yun, et al. Research status of silane treatment technology for aluminum alloy surface[J]. Electroplating and Pollution Control, 2012, 32(6):3-6. (in Chinese)
    [21] RIDER A N, ARNOTT D R. Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2000, 20(3):209-220.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵艺桥,于涛,郭逸纯,沈轶鸥.植物纤维金属层合板的抗低速冲击性能[J].建筑材料学报,2022,25(8):830-835

复制
分享
文章指标
  • 点击次数:162
  • 下载次数: 469
  • HTML阅读次数: 19
  • 引用次数: 0
历史
  • 收稿日期:2021-06-08
  • 最后修改日期:2021-07-14
  • 在线发布日期: 2023-09-15
文章二维码