脲酶诱导碳酸钙沉淀技术改良传统三合土的性能
作者:
作者单位:

江苏师范大学 历史文化与旅游学院,江苏 徐州 221116

作者简介:

董 瑾(1996—),女,江苏淮安人,江苏师范大学硕士生. E-mail: dongjin19961121@163.com

通讯作者:

刘效彬(1982—),男,河南周口人,江苏师范大学副教授,硕士生导师,博士. E-mail: 11204063@zju.edu.cn

中图分类号:

TU52

基金项目:

国家自然科学基金资助项目(51608236)


Performance of Traditional Tabia Improved by Enzyme Induced Calcite Precipitation Technology
Author:
Affiliation:

School of History Culture and Tourism, Jiangsu Normal University, Xuzhou 221116, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    采用扫描电镜、X射线衍射等研究了脲酶诱导碳酸钙沉淀(EICP)技术对三合土性能的影响.结果表明:随着豆粉质量浓度的增大,脲酶活性呈近似线性增长,其最适宜的环境pH值为3~11,当环境pH值为12时,脲酶活性急剧下降;与三合土空白样相比,脲酶改性三合土14 d碳化深度提高了94%~112%,28 d抗压强度提高了68.0%~103.0%,耐候性提高了150%~200%,60 d表面硬度提高了15.0%~18.3%;三合土空白样产生的碳酸钙晶体松散,脲酶的掺入使三合土中出现了长条状晶体和团簇状晶体,且随着豆粉质量浓度的增大,团簇状晶体相对增多,长条状晶体相对减少,使三合土的各项性能逐渐提高.

    Abstract:

    The effect of enzyme induced calcite precipitation (EICP) technology on the properties of tabia was studied by means of scanning electron microscope and X-ray diffractometry. The results show that urease activity increases approximately linearly with increasing of soybean powder mass concentration, and its optimum pH value is 3-11. When the pH value is 12, the activity drops sharply. Compared with the control sample of tabia, the carbonization speed of tabia modified with urease increases by 94%-112% in 14 days, the compressive strength increases by 68%-103% in 28 days, the weather resistance increases by 150%-200%, the surface hardness increases by 15.0%-18.3% in 60 days. The calcium carbonate crystals produced by the control sample of tabia are loose. After adding urease, long-strip crystals and cluster-like crystals appear in the tabia, and with the increase of soybean powder mass concentration, the cluster-like crystals increase relatively, and the long-strip crystals decrease relatively, the performance of tabia also gradually improves.

    图1 脲酶活性与豆粉质量浓度的关系Fig.1 Relationship between urease activity and massconcentration soybean powder
    图2 脲酶活性与pH值的关系Fig.2 Relationship between urease activity and pH value
    图3 三合土的碳化试验现象Fig.3 Phenomenon carbonation test of tabia
    图4 三合土碳化深度随龄期的变化Fig.4 Variation of carbonation depth of tabia with ages
    图5 三合土表面硬度与龄期的关系Fig.5 Relationship between surface hardness and age of tabia
    图6 三合土抗压强度与龄期的关系Fig.6 Relationship between compressive strength and age of tabia
    图7 三合土的抗冻融循环次数Fig.7 n of freeze-thaw cycles of tabia
    图8 龄期为28 d的三合土XRD图谱Fig.8 XRD patterns of tabia samples curing for 28 d
    图9 龄期为28 d的三合土SEM照片Fig.9 XRD images of tabia samples curing for 28 d
    参考文献
    [1] 陈全方. 周原西周建筑基址概述(上)[J]. 文博, 1984(1):5-12.CHEN Quanfang. Summary of Zhouyuan West Zhou building base site (Part 1)[J]. Relics and Museolgy, 1984(1):5-12. (in Chinese)
    [2] 杨钻, 程晓辉. 劣化古建砖石砌体的微生物注浆加固试验研究[J]. 工业建筑, 2015, 45(7):48-53.YANG Zuan, CHENG Xiaohui. Experimental study of deteriorated historic masonry structures reinforced by microbial grouting method[J]. Industrial Construction, 2015, 45(7):48-53. (in Chinese)
    [3] 李乃胜, 张治国, 王德发. 天津大沽炮台海字炮台和威字炮台“三合土”研究[J]. 文物保护与考古科学, 2008(2):46-51.LI Naisheng, ZHANG Zhiguo, WANG Defa. Primary study on the “Sanhe Tu” from the Haizi and Weizi emplacements in Tianjing Dagu site[J]. Sciences of Conservation and Archaeology, 2008(2):46-51. (in Chinese)
    [4] 纪晓佳, 宋茂强, 庞苗. 糯米浆三合土的物理力学性能试验研究[J]. 建筑技术, 2013, 44(6):540-543.JI Xiaojia, SONG Maoqiang, PANG Miao. Experimental study on physical and mechanical properties of sticky rice-lime mortar[J]. Architecture Technology, 2013, 44(6):540-543. (in Chinese)
    [5] 郑烨. 中国传统建筑材料三合土的成分分析检测方法研究[D]. 杭州:浙江大学, 2016.ZHENG Ye. Analysis and detection methods for the composition of Chinese traditional tabia[D]. Hangzhou:Zhejiang University, 2016. (in Chinese)
    [6] 李新明, 路广远, 张浩扬, 等. 石灰偏高岭土改良粉砂土强度特性与微观机理[J]. 建筑材料学报, 2021, 24(3):648-655.LI Xinming, LU Guangyuan, ZHANG Haoyang, et al. Strength characteristics and micro-mechanism of lime-metakaolin modified silty soil[J]. Journal of Building Materials, 2021, 24(3):648-655. (in Chinese)
    [7] ALMAJED A A. Enzyme induced carbonate precipitation (EICP) for soil improvement[D]. Phoenix:Arizona State University, 2017.
    [8] HAMDAN N, KAVAZANJIAN E. Enzyme-induced carbonate mineral precipitation for fugitive dust control[J]. Géotechnique, 2016, 66(7):546-555.
    [9] 刘士雨, 俞缙, 刘文强, 等. 基于MICP的珊瑚砂砂浆裂缝自修复新型细菌载体[J]. 建筑材料学报, 2021, 24(4):687-693.LIU Shiyu, YU Jin, LIU Wenqiang, et al. New bacterial carrier for the crack self-healing in coral sand mortar based on MICP[J]. Journal of Building Materials, 2021, 24(4):687-693. (in Chinese)
    [10] VAN PAASSEN L A. Biogrout, ground improvement by microbial induced carbonate precipitation[D]. Delft:Delft University of Technology, 2009.
    [11] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京:中国地质大学, 2014.ZHAO Qian. Experimental study on soil improvement using microbial induced calcite precipitation (MICP)[D]. Beijing:China University of Geosciences, 2014. (in Chinese)
    [12] 刘惠. 天然及合成高分子有机物对三合土中碳酸钙结晶的影响[D]. 青岛:中国海洋大学, 2014.LIU Hui. Influence of the natural and synthetic organic materials on the crystallization of calcium carbonate[D]. Qingdao:Ocean University of China, 2014. (in Chinese)
    [13] LIU D G, CHENG H H, CHANG P R, et al. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive[J]. Bioresource Technology, 2010, 101 (15):6235-6241.
    相似文献
    引证文献
引用本文

董瑾,刘效彬.脲酶诱导碳酸钙沉淀技术改良传统三合土的性能[J].建筑材料学报,2022,25(8):853-859

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-31
  • 最后修改日期:2021-07-06
  • 在线发布日期: 2023-09-15
文章二维码