高聚物固化粉土的力学特性与固结机理
作者:
作者单位:

1.郑州大学 水利科学与工程学院, 河南 郑州 450001;2.中山大学 土木工程学院, 广东 广州 510275;3.南水北调中线干线工程建设管理局渠首分局,河南 南阳 473000

作者简介:

王超杰(1993—),男,河南周口人,郑州大学博士生.E-mail: wangyichaojie123@163.com

通讯作者:

郭成超(1973—),男,河南南阳人,中山大学教授,博士生导师,博士.E-mail: guochch25@mail.sysu.edu.cn

中图分类号:

TU526

基金项目:

“十三五”国家重点研发计划资助项目(2017YFC1502606);广东省引进创新创业团队项目(2016ZT06N340)


Mechanical Properties and Consolidation Mechanism of Polymer Solidified Silt Soil
Author:
Affiliation:

1.School of Water Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;2.School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China;3.Headwork Branch of Central Route Construction Management Bureau of South to North Water Transfer Project, Nanyang 473000, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    使用胶结型高聚物对粉土进行固化,研究了高聚物掺量、粉土含水率、养护龄期对固化粉土力学特性的影响及其固化机理.结果表明:高聚物对粉土具有良好的固化效果,高聚物掺量越高,粉土含水率越低,养护龄期越长,固化土的强度越高;高聚物能够有效附着在粉土表面,并填充于粉土颗粒之间,主要通过“包裹”、“填充”、“桥接”作用,减小粉土的孔隙比,提高粉土的密实度,从而提升粉土的强度和抗渗性,但在此过程中没有生成新的化合物.

    Abstract:

    The cemented polymer was used to solidify silt soil. The effects of polymer content, silt soil moisture, and curing time on the mechanical property of the silt soil have been investigated. The solidification mechanism of polymer for silt soil was demonstrated. The results indicate that polymer has a good consolidation effect on silt soil. The strength of solidified silt soil increases with the increase of polymer content, the decrease of silt soil moisture content and the increase of curing time. Polymer can effectively adhere to the surface of silt soil and fill voids between silt soil particles. Polymer can reduce the porosity ratio and improve the compactness of silt soil, so as to improve the strength and anti-permeability of silt soil mainly through adhesion, wrapping, filling, and bridging. No new compounds are produced in this process.

    表 4 不同高聚物掺量试样的物理性质Table 4 Physical properties of samples with different polymer content
    表 1 粉土的物理性能Table 1 Physical properties of the silt soil
    表 3 渗透系数试验方案设计Table 3 Design of permeability coefficient test scheme
    图1 粉土的颗粒分布曲线Fig.1 Particle size distribution of silt soil
    图2 高聚物抗压强度随龄期的变化Fig.2 Compressive strength of polymer varies with age
    图3 不同含水率下高聚物掺量与固化土无侧限抗压强度的关系Fig.3 Relationship between polymer content and UCS of solidified silt soil at different water contents
    图4 固化土无侧限抗压强度与养护龄期的关系Fig.4 Relationship between UCS and curing time of solidified silt soil
    图5 固化土无侧限抗压强度与粉土含水率的关系Fig.5 Relationship between UCS of solidified silt soil and moisture content of silt soil
    图6 含水率为8% 时固化土渗透系数与高聚物掺量的关系Fig.6 Relation ship between k values of the solidified silt soil and polymer contents under 8% water content
    图7 高聚物对粉土不同作用形式的SEM图像Fig.7 SEM images of different polymer interaction forms
    图8 素土及高聚物固化土试样的EDS测试结果Fig.8 EDS test results of pure and solidified silt soil samples
    图9 素土及高聚物固化土的XRD图谱Fig.9 XRD patterns of pure silt soil and solidified silt soil
    图10 含水率为8% 时不同高聚物掺量试样的孔隙直径分布图Fig.10 Pore diameter distribution diagram of samples with different polymer contents under 8% water content
    表 2 无侧限抗压强度试验方案设计Table 2 Design of UCS test scheme
    参考文献
    [1] 朱志铎, 郝建新. 粉土固化剂研制的试验研究[C]//第三届全国岩土与工程学术大会. 成都: 四川科学技术出版社, 2009:618-621.
    [2] 储诚富,洪振舜,刘松玉,等.用似水灰比对水泥土无侧限抗压强度的预测[J].岩土力学,2005(4):645-649.
    [3] 李学德,林庆梅,彭旭华,等.水泥固化土抗冻性能影响因素分析[J].人民珠江,2020,41(12):72-77.
    [4] 刘霖,张永鹏,魏中曹.水泥固化煤化工废渣盐污染土强度及孔隙特性[J].内蒙古工业大学学报(自然科学版), 2020, 39(6):463-468.
    [5] 樊恒辉,吴普特,高建恩, 等.水泥基土壤固化剂固化土的微观结构特征[J].建筑材料学报, 2010, 13(5):669-674.
    [6] ZENG L L, BIAN X, ZHAO L, et al. Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China[J]. Geomechanics for Energy and the Environment, 2021, 25:100195.
    [7] KOLIAS S , KASSELOURI-RIGOPOULOU V , KARAHALIOS A. Stabilisation of clayey soils with high calcium fly ash and cement[J]. Cement and Concrete Composites, 2005, 27(2):301-313.
    [8] CHENG Y Z, WANG S, LI J, et al. Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans[J]. Construction and Building Materials, 2018, 187:1031-1038.
    [9] RIOS S, RAMOS C, ANTÓNIO VDF, et al. Mechanical and durability properties of a soil stabilised with an alkali-activated cement[J]. European Journal of Environmental & Civil Engineering, 2017, 23(1):1-23.
    [10] 张国防,王博,张海旭, 等.OPC-GBFS-NS体系土体硬化剂固化土壤的作用效果研究[J].建筑材料学报, 2022, 25(1):61-67.
    [11] 俞家人,陈永辉,陈庚, 等.地聚物固化软黏土的力学特征及机理分析[J].建筑材料学报,2020,23(2):364-371.
    [12] 倪宏革,周红.膨胀土固化材料的分类与固化机理[J].路基工程,2007(6):21-23.
    [13] 力乙鹏,李婷.土壤固化剂的固化机理与研究进展[J].材料导报, 2020, 34(增刊2):1273-1277,1298.
    [14] 刘瑾,张达,汪勇, 等.高分子稳定剂生态护坡机理及其应用[J].地球科学与环境学报,2016,38(3):420-426.
    [15] 王银梅, 孙冠平, 谌文武,等. SH固沙剂固化沙体的强度特征[J]. 岩石力学与工程学报, 2003, 22(增刊2):2883-2887.
    [16] 王银梅,杨重存,谌文武, 等.新型高分子材料SH加固黄土强度及机理探讨[J].岩石力学与工程学报,2005(14):2554-2559.
    [17] 刘宏伟. SH及石灰固化土吸水和失水性能研究[D]. 兰州:兰州大学,2019.
    [18] 吴淑芳,吴普特,冯浩.高分子聚合物对土壤物理性质的影响研究[J].水土保持通报,2003(1):42-45.
    [19] CALLEBAUT F, GABRIELS D, BOODT M D. The effect of polymer structure on soil physico‐chemical properties and soil water evaporation[J]. Journal of Chemical Technology and Biotechnology, 1979, 29(12):723-729.
    [20] 刘建成. 高性能聚氨酯砂土固结材料研究与应用[D]. 成都:成都理工大学,2016.
    [21] 吕昭元,杨强,余利军, 等.固废基硫铝酸盐水泥固化低液限粉土的试验研究[J].中外公路,2021,41(1):265-269.
    [22] PU S Y, ZHU Z D, WANG H R, et al. Mechanical characteristics and water stability of silt solidified by incorporating lime, lime and cement mixture, and SEU-2 binder[J]. Construction and Building Materials, 2019, 214:111-120.
    [23] 陶高梁,吴小康,杨秀华,等.水泥土的孔隙分布及其对渗透性的影响[J]. 工程地质学报, 2018, 26(5):1243-1249.
    [24] 李迎春,钱春香,刘松玉,等.粉土固化稳定机理研究[J]. 岩土工程学报, 2004(2):268-271.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王超杰,李逢源,郭成超,郝继锋,周学友.高聚物固化粉土的力学特性与固结机理[J].建筑材料学报,2022,25(6):598-606

复制
分享
文章指标
  • 点击次数:194
  • 下载次数: 288
  • HTML阅读次数: 28
  • 引用次数: 0
历史
  • 收稿日期:2021-04-14
  • 最后修改日期:2021-06-15
  • 在线发布日期: 2022-08-01
文章二维码