典型工业环境下混凝土硫化机理与预测模型
作者:
作者单位:

1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.西安建筑科技大学 省部共建西部绿色建筑国家重点实验室,陕西 西安 710055

作者简介:

吕 瑶(1992—),女,陕西永寿人,西安建筑科技大学博士生. E-mail: lvyaozuibangde@163.com

通讯作者:

牛荻涛(1963—),男,陕西华县人,西安建筑科技大学教授,博士生导师,博士.E-mail: niuditao@163.com

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(52078413,51808437);教育部“创新团队发展计划”(IRT_17R84)


Prediction Model and Sulphuration Mechanism of Concrete in Typical Industrial Environment
Author:
Affiliation:

1.School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;2.State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在典型工业环境下开展了混凝土的快速硫化试验,研究了水灰比、温度和SO2体积分数对混凝土硫化深度的影响.建立了典型工业环境下混凝土的硫化深度预测模型.采用扫描电镜(SEM)和X射线衍射(XRD)分析了混凝土的硫化机理.结果表明:混凝土硫化深度随着硫化龄期的延长而增大;水灰比为0.57的混凝土在50 ℃、SO2体积分数为0.9%条件下硫化20 d时硫化深度最大,达到5.27 mm;混凝土在硫化前期的硫化产物为针状钙矾石晶体,硫化20 d时生成大量板状石膏晶体.

    Abstract:

    The rapid sulphuration test of concrete in typical industrial environment was carried out. Variations of concrete sulphuration depth with water-cement ratio, temperature and SO2 volume fraction were studied. The prediction model of concrete sulphuration depth in typical industrial environment was established. The sulphuration mechanism of concrete was analyzed by means of scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the sulphuration depth of concrete increases with increasing sulphuration age. When the temperature is 50 ℃ and the SO2 volume fraction is 0.9%, the sulphuration depth of concrete with a water-cement ratio of 0.57 reaches 5.27 mm at the age of 20 days. The sulphuration product is acicular crystal ettringite at the initial stage of sulphuration, and a large number of plate crystal gypsum is formed in the specimen at the age of 20 days.

    表 3 试验分组Table 3 Test grouping
    表 1 水泥化学组成Table 1 Chemical composition of cement
    表 4 混凝土硫化深度模型计算值与试验值对比Table 4 Comparison of calculated values and tested values of concrete sulphuration depth
    图1 不同水灰比混凝土的硫化深度Fig.1 Sulphuration depth of concretes with different water-cement ratios
    图2 不同温度下混凝土的硫化深度Fig.2 Sulphuration depth of concretes with different temperatures
    图3 不同SO2体积分数下混凝土的硫化深度Fig.3 Sulphuration depth of concretes with different SO2 volume fractions
    图4 基准组混凝土(S1)硫化后的微观形貌Fig.4 Micromorphology of reference group concrete(S1) after sulphuration
    图5 不同硫化龄期下表层混凝土的XRD图谱Fig.5 XRD patterns of concretes at different sulphuration ages
    图6 水灰比与硫化系数的关系Fig.6 Relationship between sulphuration coefficient and water-cement ratio
    图7 温度与硫化系数的关系Fig.7 Relationship between sulphuration coefficient and temperature
    图8 SO2体积分数与硫化系数的关系Fig.8 Relationship between sulphuration coefficient and SO2 volume fraction
    表 2 混凝土配合比及立方体抗压强度Table 2 Mix proportion and cubic compressive strength of concrete
    参考文献
    [1] SLUNGE D, EKBOM A, DAHLBERG E. Serbia environmental and climate impact analysis[R]. Sweden: Göteborg University, 2008.
    [2] PAVLIK V, BAJZA A, ROUSEKOUVA I, et al. Degradation of concrete by flue gases from coal combustion[J]. Cement and Concrete Research, 2007, 37(7):1085-1095.
    [3] KROTKOV N A, MCLINDEN C A, LI C, et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015[J]. Atmospheric Chemistry and Physics, 2016, 16(7):4605-4629.
    [4] LING Z, HUANG T, ZHAO Y, et al. OMI-measured increasing SO2 emissions due to energy industry expansion and relocation in northwestern China[J]. Atmospheric Chemistry and Physics, 2017, 17(14):9115-9131.
    [5] 蒋茂荣, 肖新建. 2020年煤炭供需形势分析与2021展望[J]. 中国能源, 2021,43(3):34-38,48.
    [6] VAN DER A R J, MIJLING B, DING J Y, et al. Cleaning up the air:Effectiveness of air quality policy for SO2 and NOx emissions in China[J]. Atmospheric Chemistry and Physics, 2017, 17(3):1775-1789.
    [7] 中国人民共和国环境保护部. 中国环境状况公报[R]. 2015.
    [8] NIU D T, LV Y, LIU X G, et al. Study on the sulfuration mechanism of concrete:Microstructure and product analysis[J]. Materials, 2020, 13(15):3386.
    [9] 于忠, 胡蔚儒. 化工大气环境中混凝土腐蚀机理及性能研究[J]. 混凝土, 2000(8):10-15.
    [10] NIU J G, WU B, ZHU C, et al. Corrosion rules for ordinary concrete exposed to sulfur dioxide-containing environments[J]. Toxicological and Environmental Chemistry, 2015, 97(3/4):367-378.
    [11] 牛建刚, 胡伟勋, 杨鹏飞. 二氧化硫腐蚀对混凝土性能影响试验研究[J]. 硅酸盐通报, 2016, 35(1):44-51.
    [12] 牛建刚, 吴斌, 杨鹏飞. 二氧化硫条件下粉煤灰混凝土的腐蚀性能研究[J]. 混凝土, 2016(3):56-59.
    [13] 唐志永, 金保升, 仲兆平, 等. 电站烟囱混凝土SO2腐蚀模拟研究[J]. 工业建筑, 2005, 35(增刊1):710-713.
    [14] 莫斯克文 B M, 阿列克谢耶夫 C H, 伊万诺夫 Φ M, 等. 混凝土和钢筋混凝土的腐蚀及其防护方法[M]. 北京:化学工业出版社, 1988:239-241.
    [15] 蔡洪良, 陈飞. 火电厂湿法烟气脱硫后烟囱防腐调研总结[J]. 武汉大学学报(工学版),2012, 45(增刊1):234-238.
    [16] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学出版社, 2003:14.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕瑶,牛荻涛,刘西光,张少辉,陈国鑫.典型工业环境下混凝土硫化机理与预测模型[J].建筑材料学报,2022,25(6):621-627

复制
分享
文章指标
  • 点击次数:146
  • 下载次数: 306
  • HTML阅读次数: 14
  • 引用次数: 0
历史
  • 收稿日期:2021-04-06
  • 最后修改日期:2021-05-31
  • 在线发布日期: 2022-08-01
文章二维码