运输时间对水泥-石灰石粉浆体屈服应力的影响
作者:
作者单位:

1.中南大学 土木工程学院, 湖南 长沙, 410075;2.中国电力建设集团有限公司 中国水利水电 第八工程局有限公司科研设计院,湖南 长沙, 410004

作者简介:

胡晓妍(1997—),女,湖南株洲人,中南大学硕士生.E-mail: HuXiaoyan155@163.com

通讯作者:

肖 佳(1964—),女,湖南衡阳人,中南大学教授,博士生导师,博士.E-mail: jiaxiaog2007@163.com

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(51278497);中南大学研究生自主探索创新项目(2022zzts624)


Influence of Transport Time on Yield Stress of Cement-Ground Limestone Paste
Author:
Affiliation:

1.School of Civil Engineering, Central South University, Changsha 410075, China;2.Research and Design Institute of Sinohydro Engineering Bureau 8 Co., Ltd., Power Construction Corporation of China, Changsha 410004, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过测定水泥-石灰石粉浆体的屈服应力,并基于EDLVO理论计算不同运输时间下浆体颗粒间的作用力,研究了运输时间对浆体屈服应力的影响机制.结果表明:各运输时间下浆体的屈服应力随着颗粒总比表面积的增加先减后增,随着运输时间的增加逐渐增大;浆体中颗粒的水膜厚度与屈服应力具有良好的负相关性;同一颗粒间距下,随着石灰石粉掺量和细度的增加,浆体的范德华力和A-B作用力逐渐减小,静电力没有明显变化规律,且不同浆体的颗粒间总作用力变化较小.同时还建立了不同运输时间下浆体屈服应力与颗粒间总作用力的关系.

    Abstract:

    By measuring the yield stress of cement-ground limestone pastes and calculating the interparticle forces of pastes under different transport time based on EDLVO theory, the mechanism of the change of yield stress of pastes under different transport time was studied. The results show that the yield stress decreases first and then increases with the increase of the total specific surface area. The yield stress of pastes increases with the increase of transport time. There is a good negative correlation between water film thickness of pastes and yield stress. At the same particle spacing, the van der Waals forces and A-B forces of pastes decreases with increasing content and fineness of ground limestone, while electrostatic force has no obvious change rule. Moreover, the variation of the total interparticle force with different cement-ground limestone pastes is small with the same particle spacing. The relationship between yield stress and total interparticle forces and average spacing under different transport time is established.

    表 3 水泥和石灰石粉颗粒的表面能与Zeta电位Table 3 Surface energy and Zeta potential of cement and ground limestone particles
    表 1 水泥-石灰石粉浆体配合比Table 1 Mix proportions of cement-ground limestone pastes
    图1 不同运输时间下水泥-石灰石粉浆体屈服应力随颗粒总比表面积的变化Fig.1 Variation of yield stress of cement-ground limestone paste with total specific surface area under different transport time
    图2 不同运输时间下水泥-石灰石粉浆体的颗粒堆积密实度和水膜厚度Fig.2 Packing density and water film thickness of cement-ground limestone paste under different transport time
    图3 水泥-石灰石粉浆体颗粒水膜厚度与屈服应力的关系Fig.3 Relationship between water film thickness and yield stress of cement-ground limestone paste
    图4 不同运输时间下水泥-石灰石粉浆体颗粒间作用力随颗粒表面间距的变化Fig.4 Variations of interparticle forces of cement-ground limestone paste with separation distance under different transport time
    图5 不同运输时间下水泥-石灰石粉浆体颗粒间总作用力随颗粒表面间距的变化Fig.5 Variations of FT of cement-ground limestone pastes with separation distance under different transport time
    参考文献
    [1] WANG D H, SHI C J, FARZADNIA N, et al. A review on effects of limestone powder on the properties of concrete[J]. Construction and Building Materials, 2018, 192:153-166.
    [2] NEHDI M, AL-MARTINI S. Coupled effects of high temperature, prolonged mixing time, and chemical admixtures on rheology of fresh concrete[J]. ACI Materials Journal, 2009, 106(3):231-240.
    [3] DIAWARA H, GHAFOORI N. Influence of hauling time on fresh properties of self-consolidating concrete[J]. ACI Materials Journal, 2011, 108(3):244-251.
    [4] KHALID A R, RIZWAN S A, HANIFU, et al. Effect of mixing time on flowability and slump retention of self-compacting paste system incorporating various secondary raw materials[J]. Arabian Journal for Science and Engineering, 2016, 41(4):1283-1290.
    [5] AMINI K, MEHDIPOUR I, HWANG S D, et al. Effect of binder composition on time-dependent stability and robustness characteristics of self-consolidating mortar subjected to prolonged agitation[J]. Construction and Building Materials, 2016, 112:654-665.
    [6] ROUSSEL N, OVARLEZ G, GARRAULT S, et al. The origins of thixotropy of fresh cement pastes[J]. Cement and Concrete Research, 2012, 42(1):148-157.
    [7] WONG H H C, KWAN A K H. Packing density of cementitious materials:Part 1 Measurement using a wet packing method[J]. Materials and Structures, 2008, 41(4):689-701.
    [8] KNOP Y, PELED A. Packing density modeling of blended cement with limestone having different particle sizes[J]. Construction and Building Materials, 2016, 102:44-50.
    [9] JOHNSON S B, FRANKS G V, SCALES P J, et al. Surface chemistry-rheology relationships in concentrated mineral suspensions[J]. International Journal of Mineral Processing, 2000, 58(1):267-304.
    [10] ALONSO M M, PALACIOS M, PUERTAS F. Compatibility between polycarboxylate-based admixtures and blended-cement pastes[J]. Cement and Concrete Composites, 2013, 35(1):151-162.
    [11] KWOK D Y, NEUMANN A W. Contact angle measurement and contact angle interpretation[J]. Advances in Colloid and Interface Science, 1999, 81(3):167-249.
    [12] SHANAHAN N, TRAN V, WILLIAMS A, et al. Effect of SCM combinations on paste rheology and its relationship to particle characteristics of the mixture[J]. Construction and Building Materials, 2016, 123:745-753.
    [13] LI L G, CHU S H, ZENG K L, et al. Roles of water film thickness and fibre factor in workability of polypropylene fibre reinforced mortar[J]. Cement and Concrete Composites, 2018, 93:196-204.
    [14] YE H, GAO X J, WANG R, et al. Relationship among particle characteristic, water film thickness and flowability of fresh paste containing different mineral admixtures[J]. Construction and Building Materials, 2017, 153:193-201.
    [15] LAVERGNE F, BELHADI R, CARRIAT J, et al. Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste[J]. Cement and Concrete Composites, 2019, 95:42-55.
    [16] WANG D Q, WANG Q, HUANG Z X. Investigation on the poor fluidity of electrically conductive cement-graphite paste:Experiment and simulation[J]. Materials & Design, 2019, 169:107679.
    [17] LIN T, LU Z J, CHEN W. Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach[J]. Journal of Membrane Science, 2014, 461:49-58.
    [18] GUO Y Q, ZHANG T S, WEI J X, et al. Evaluating the distance between particles in fresh cement paste based on the yield stress and particle size[J]. Construction and Building Materials, 2017, 142:109-116.
    [19] WALLEVIK J E. Rheological properties of cement paste:Thixotropic behavior and structural breakdown[J]. Cement and Concrete Research, 2009, 39(1):14-29.
    [20] 李友坤. BP神经网络的研究分析及改进应用[D]. 淮南:安徽理工大学, 2012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡晓妍,肖佳,韩凯东,张泽的,田承宇.运输时间对水泥-石灰石粉浆体屈服应力的影响[J].建筑材料学报,2022,25(6):613-620

复制
分享
文章指标
  • 点击次数:156
  • 下载次数: 260
  • HTML阅读次数: 19
  • 引用次数: 0
历史
  • 收稿日期:2021-05-09
  • 最后修改日期:2021-06-06
  • 在线发布日期: 2022-08-01
文章二维码