粉煤灰掺量对应变硬化水泥基复合材料力学性能及损伤特征的影响
作者:
作者单位:

1.青岛理工大学 土木工程学院,山东 青岛 266033;2.青岛理工大学 山东省蓝色经济区工程建设与安全协同创新中心,山东 青岛 266033

作者简介:

郭伟娜(1992—),女,山东菏泽人,青岛理工大学博士生.E-mail: guoweina711@163.com

通讯作者:

张 鹏(1981—),男,山东潍坊人,青岛理工大学教授,博士生导师,博士. E-mail: peng.zhang@qut.edu.cn

中图分类号:

TU528

基金项目:

国家自然科学基金资助项目(51922052, 51778309);国家重点研发计划项目(2021YFB2600704);山东省杰出青年基金资助项目(ZR2021JQ17)


Effect of Fly Ash Content on Mechanical Properties and Damage Characteristics of Strain-Hardening Cementitious Composites
Author:
Affiliation:

1.College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;2.Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    通过单轴拉伸、三点弯曲和抗压强度试验,研究粉煤灰掺量对应变硬化水泥基复合材料(SHCC)力学性能和损伤特征的影响,并利用数字图像相关技术对整个拉伸加载过程进行分析,提出利用开裂面积和分形维数量化SHCC试件的损伤程度,得到SHCC在加载过程中的应变演化和损伤特征.结果表明:随着粉煤灰掺量的增加,SHCC的拉伸强度、抗压强度及抗弯强度均逐渐降低,耗能能力逐渐提高,变形性能得到改善,但损伤程度增加;通过数字图像相关技术获得的应变云图可以直观观测SHCC的应变演化;开裂面积比和分形维数能够有效表征SHCC的损伤程度及开裂复杂性,可作为描述其损伤的度量指标.

    Abstract:

    The effect of fly ash content on the mechanical properties and damage characteristics of strain-hardening cementitious composites (SHCC) was studied by uniaxial tensile, three-point bending and compressive strength tests. The whole tensile loading process was analyzed by using digital image correlation techniques. The cracking area and fractal dimension were proposed to quantify the damage degree of SHCC specimens, and the strain evolution and damage characteristics of SHCC during the loading process were obtained. The results show that with the increase of fly ash content, the tensile strength, compressive strength and flexural strength of strain hardening cementitious composites (SHCC) gradually decrease, the energy consumption capacity gradually increases. Its deformation performance is improved, though the damage degree increases. The strain evolution of SHCC can be visualized by the strain cloud map obtained by the digital image correlation technique. The cracking area ratio and fractal dimension can effectively characterize the damage degree and cracking complexity of SHCC, which can be used as measurement indexes to describe its damage.

    表 3 FA-SHCC的弯曲性能参数Table 3 Bending performance parameters of FA-SHCC
    表 1 粉煤灰的化学组成Table 1 Chemical composition of fly ash
    表 4 FA-SHCC拉伸性能参数Table 4 Tensile property parameters of FA-SHCC
    表 5 FA-SHCC开裂面积比与分形维数Table 5 R and Df of FA-SHCC
    表 2 FA-SHCC的配合比Table 2 Mix proportion of FA-SHCC
    图1 试件的制备过程Fig.1 Preparation process of specimens
    图2 纯浆体和FA-SHCC的抗压性能Fig.2 Compressive properties of mortar and FA-SHCC
    图3 FA-SHCC的弯曲荷载-位移曲线Fig.3 Bending load-displacement curves of FA-SHCC
    图4 FA-SHCC的直接拉伸应力-应变曲线Fig.4 Direct tensile stress-strain curves of FA-SHCC
    图5 FA-SHCC全场应变云图Fig.5 Full-filed strain cloud diagram of FA-SHCC
    图6 提取的FA-SHCC裂缝Fig.6 Extracted cracks of FA-SHCC
    图7 FA1.2的SEM照片Fig.7 SEM images of FA1.2
    参考文献
    [1] 苏骏, 李磊, 吴鹏, 等. 钢纤维与 PVA 纤维对超高性能混凝土强度及抗冲磨性能影响研究[J]. 混凝土与水泥制品, 2019(11):39-42.
    [2] HAMID R, MASOUD J, MASOUD L. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers [J]. Construction and Building Materials, 2016, 112:739-746.
    [3] FELEKOGLU K, FELEKOGLU B, RANADE R, et al. The role of flaw size and fiber distribution on tensile ductility of PVA-ECC[J]. Composite Part B:Engineering,2014, 56:536-545.
    [4] LAWLER J S, ZAMPINI D, SHAH S P. Micro-fiber and macro-fiber hybrid fiber reinforced concrete [J]. Journal of Materials in Civil Engineering, 2005, 17 (5):595-604.
    [5] LI V C. From micromechanics to structural engineering—The design of cementitious composites for civil engineering applications [J]. Japan Society of Civil Engineers, 1993, 10(2):37-48.
    [6] HE S, QIU J S, LI J X, et al. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers[J]. Cement and Concrete Research, 2017, 98:50-60.
    [7] YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construct Building Materials, 2018, 158:217-227.
    [8] HERAVI A A, CUROSU I, MECHTCHERINE M. A gravity-driven split Hopkinson tension bar for investigating quasi-ductile and strain-hardening cement-based composites under tensile impact loading[J]. Cement and Concrete Composites, 2020, 105:103430.
    [9] 胡春红,李珍珍,汤广田. 不同养护环境下 SHCC 单轴拉伸性能试验研究[J]. 河南工业大学学报(自然科学版), 2017, 36(1):129-135.
    [10] WANG S X, LI V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal, 2007, 104(3):233-243.
    [11] MUSTAFA S, ERDOGAN O, HASAN E Y, et al. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures[J]. Journal of Materials in Civil Engineering, 2011, 23(12):1735-1745.
    [12] YU J T, LIN J H, ZHANG Z G, et al. Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures[J]. Construction and Building Materials, 2015, 99:82-89.
    [13] ZHANG Z G, LIU J C, XU X Q, et al. Effect of sub-elevated temperature on mechanical properties of ECC with different fly ash contents[J]. Construction and Building Materials, 2020, 262:120096.
    [14] 万小梅, 刘杰, 朱亚光, 等. 粉煤灰用量和养护温度对EGC拉伸性能的影响[J]. 建筑材料学报, 2022, 25(4):401-407.
    [15] NEMATOLLAHI B, SANJAYAN J, QIU J S, et al. High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite:A micromechanics-based investigation [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3):555-563.
    [16] JSCE. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC) [S]. Tokyo:Japan Society of Civil Engineers, 2008.
    [17] PAN B, QIAN K, XIE H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement:A review[J]. Measurement Science and Technology, 2009, 20:062001.
    [18] 于海洋, 李地红, 代函函, 等. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(增刊1):229-233.
    [19] BAI R, LIU S G, YAN C W, et al. Flexural cracking performance of strain-hardening cementitious composites with polyvinyl alcohol:Experimental and analytical study[J]. Construction and Building Materials, 2020, 247:118110.
    [20] LI V C, WU C, WANG S X, et al. Interface tailoring for strain hardening PVA-ECC[J]. ACI Materials Journal, 2002, 99 (5):463-472.
    [21] 孙浩然,邹春霞,薛慧君,等. 模袋混凝土干湿-冻融侵蚀孔结构的分形特征[J]. 建筑材料学报, 2022, 25(2):124-130.
    相似文献
    引证文献
引用本文

郭伟娜,张鹏,鲍玖文,孙燕群,赵铁军.粉煤灰掺量对应变硬化水泥基复合材料力学性能及损伤特征的影响[J].建筑材料学报,2022,25(6):551-557

复制
分享
文章指标
  • 点击次数:167
  • 下载次数: 328
  • HTML阅读次数: 32
  • 引用次数: 0
历史
  • 收稿日期:2021-03-18
  • 最后修改日期:2021-06-02
  • 在线发布日期: 2022-08-01
文章二维码