干湿/冻融循环作用下改良隔离墙的渗透性及孔隙结构
作者:
作者单位:

1.内蒙古工业大学 土木工程学院,内蒙古 呼和浩特 010051;2.内蒙古工业大学 内蒙古土木工程结构与力学重点实验室,内蒙古 呼和浩特 010051

作者简介:

刘 科(1995—),男,山西长治人,内蒙古工业大学硕士生. E-mail: 3445170532@qq.com

通讯作者:

刘 霖(1968—),女,北京人,内蒙古工业大学副教授,硕士生导师,硕士. E-mail: 374628630@qq.com

中图分类号:

X53

基金项目:

内蒙古自治区自然科学基金资助项目(2019MS05059)


Permeability and Pore Structure of Improved Isolation Wall under the Action of Dry-Wet/Freeze-Thaw Cycles
Author:
Affiliation:

1.College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;2.Key Laboratory of Civil Engineering Structure and Mechanics of Inner Mongolia, Inner Mongolia;University of Technology, Hohhot 010051, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以凹凸棒土为改良隔离墙材料,通过渗透试验分析凹凸棒土掺量、苯酚质量浓度和干湿/冻融循环作用对隔离墙渗透系数的影响,结合核磁共振试验研究隔离墙孔隙结构,讨论凹凸棒土的掺入对干湿/冻融循环作用下隔离墙防渗效果的影响.结果表明:隔离墙渗透系数随凹凸棒土掺量增大而减小,随干湿/冻融循环次数增加而增大,不随苯酚质量浓度变化而变化;凹凸棒土可使干湿/冻融循环作用下隔离墙的渗透系数降低,且随着干湿/冻融循环次数的增加,隔离墙中小孔隙分布减少,中孔隙增多;凹凸棒土可增强隔离墙的防渗效果,亦可抑制干湿/冻融循环作用对其产生的破坏;冻融循环作用对隔离墙渗透系数及孔隙结构的影响大于干湿循环作用.

    Abstract:

    Using attapulgite as the improved isolation wall material, the effects of attapulgite content, phenol concentration, the action of dry-wet or freeze-thaw cycles on the permeability coefficient of the isolation wall were invesgated through permeability test. Combined with nuclear magnetic resonance test, the internal pore structure was studied, and the influence of attapulgite on the anti-seepage effect of the isolation wall was discussed. The results show that the permeability coefficient decreases with the increase of attapulgite content, and increases with the increase of dry-wet or freeze-thaw cycles, and does not change with the change of phenol concentration. Attapulgite can reduce the permeability coefficient of the isolation wall under the action of dry-wet or freeze-thaw cycles,and the distribution of small pores in the isolation wall decreases and the number of mesopores increases with the increase of dry-wet or freeze-thaw cycles. Attapulgite can enhance the anti-seepage effect of the isolation wall, and also restrain the damage caused by the action of dry-wet or freeze-thaw cycles. The effect of freeze-thaw cycles on permeability coefficient and pore structure of isolation wall is greater than that of dry-wet cycles.

    表 1 干湿、冻融循环作用下渗透时间对隔离墙渗透系数的影响Table 1 Influence of time on permeability coefficient of isolation walls under the action of dry-wet and freeze-thaw cycles ×106/(cm·s-1)
    图1 凹凸棒土对隔离墙渗透系数的影响Fig.1 Influence of attapulgite on permeability coefficient of isolation walls
    图2 干湿循环作用下隔离墙渗透系数的变化曲线Fig.2 Variation curves of permeability coefficient of isolation walls under dry-wet cycles(t=20 min)
    图3 冻融循环作用下隔离墙渗透系数的变化曲线Fig.3 Variation curves of permeability coefficient of isolation wall under freeze-thaw cycles
    图4 凹凸棒土掺量对隔离墙孔隙分布的影响Fig.4 Effects of wa on the pore size distribution of isolation walls
    图5 干湿循环作用下隔离墙孔隙分布Fig.5 Pore size distribution of isolation wall under dry-wet cycles
    图6 冻融循环作用下隔离墙孔隙分布Fig.6 Pore size distribution of isolation wall under freeze-thaw cycles
    参考文献
    [1] 杜延军, 范日东. 改性土-膨润上竖向隔离墙材料的压缩及渗透特性试验研究[J]. 岩土力学, 2011, 32(增刊1):49-54.
    [2] YEO S S, SHACKELFORD C D, EVANS J C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10):1189-1198.
    [3] MALUSIS M A, BARBEN E J, EVANS J C. Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5):664-672.
    [4] ANGIN I, SARI S, AKSAKAL E L, et al. Effects of diatomite (DE) application on physical properties of soils subjected to freeze-thaw cycles[J]. Soil and Tillage Research, 2016, 160:34-41.
    [5] MALUSIS M A, YEOM S, EVANS J. Hydraulic conductivity of model soil-bentonite backfills subjected to wet-dry cycling[J]. Canadian Geotechnical Journal, 2011, 48(8):1198-1211.
    [6] 杜渊博, 葛勇. 偏高岭土、玻璃粉和石灰石粉对水泥石微观结构和性能的影响[J/OL]. 建筑材料报:1-12[2022-02-21].http://kns.cnki.net/kcms/detail/31.1764.TU.20210916.0942.002. html.
    [7] 吕淑清. 土壤-膨润土泥浆墙对污染物的阻截性能及机理研究[D]. 吉林:吉林大学, 2015.
    [8] 陈彬, 王宝, 许健, 等. 冻融-干湿循环作用下土工合成黏土衬垫防渗性能变化规律[J]. 新型建筑材料, 2019 (1):128-133.
    [9] 查甫生, 刘晶晶, 许龙,等. 水泥固化重金属污染土干湿循环特性试验研究[J]. 岩土工程学报, 2013, 35(7):1246-1252.
    [10] MAZZIERI F, EMIDIO G D, FRATALOCCHI E, et al. Permeation of two GCLs with an acidic metal-rich synthetic leachate[J]. Geotextiles and Geomembranes, 2013, 40:1-11.
    [11] 刘菊. 膨润土在废水处理中的应用[J]. 化工时刊, 2010, 24(3):30-32.
    [12] 陶高梁, 吴小康, 杨秀华,等. 水泥土的孔隙分布及其对渗透性的影响[J]. 工程地质学报, 2018, 26(5):1243-1249.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘科,刘霖,张永鹏.干湿/冻融循环作用下改良隔离墙的渗透性及孔隙结构[J].建筑材料学报,2022,25(5):545-550

复制
分享
文章指标
  • 点击次数:161
  • 下载次数: 413
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2021-02-01
  • 最后修改日期:2021-05-28
  • 在线发布日期: 2022-06-24
文章二维码