水泥土组成矿物的热重-热力学模拟联用分析
作者:
作者单位:

1.南京水利科学研究院 材料结构研究所,江苏 南京 210029;2.重庆大学 土木工程学院,重庆 400045

作者简介:

徐 菲(1989—),男,江苏江阴人,南京水利科学研究院博士后.E-mail: fxu@nhri.cn

通讯作者:

钱文勋(1977—),男,江苏无锡人,南京水利科学研究院正高级工程师,博士.E-mail: wxqian@nhri.cn

中图分类号:

TV41

基金项目:

国家自然科学基金资助项目(52109161);中国博士后科学基金项目(2021M691630);水利部技术示范项目(SF-202109); 中央级公益性科研院所基本科研业务费专项资金(Y421002, Y420005)


Compositional Minerals of Cemented Soil by Combined Thermogravimetry and Thermodynamic Modelling
Author:
Affiliation:

1.Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China;2.School of Civil Engineering, Chongqing University, Chongqing 400045, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对常规微观测试技术难以准确分析水泥土矿物组成的问题,提出联用热重分析与热力学模拟的方法,综合分析水泥土的矿物组成与过饱和度(SI).制备了水泥与土干重比为1∶9的基准水泥土,以及炼钢厂回转炉底灰(SLA)替代5%~100%水泥的改性水泥土,测试其无侧限抗压强度,并采用所提出的方法分析混料后5~672 h内水泥土关键矿物组成的赋存特征,以探明SLA对水泥土性能的改性机理.结果表明:热力学模拟可以定量表征水泥土矿物组成的赋存状态,有效弥补热重分析难以区分吸热峰重叠矿物的不足;SLA主要通过提升水泥土孔隙液中Ca(OH)2的SI来提升水泥土的长期强度.

    Abstract:

    The mineralogical study on the cemented soil using conventional micro-analysis methods is inaccurate due to the compositional complexity. A method of thermogravimetry combined with the thermodynamic modelling, which calculated the mineral supersaturation index(SI) based on pore solution composition was proposed. The dry mass ratio of cement/soil of the referenced cemented soil specimen was 1/9, and the modified specimens were prepared by using the sintered limestone ash(SLA) from the steel-making industry to replace cement in fractions of 5%-100% of the referenced mass. The unconfined compressive strength of all specimens was tested and the representative specimens were then selected for quantitative analysis of the critical minerals using the proposed method within the timeframe of 5-672 h after the mixing. The results demonstrate that the thermodynamic modelling provides direct implications of the occurrence state of the minerals of the cemented soil, which complementes the defect of the endotherms overlapping of thermogravimetry. Meanwhile, the long-term unconfined compressive strength improvement is benefitted from the increased Ca(OH)2 SI in the pore solution with appropriate SLA addition.

    表 10 5~672 h龄期内CS及LA20中所选矿物的SI计算结果Table 10 SI of representative minerals in CS and LA20 after 5-672 h
    表 7 干料的配合比Table 7 Mix proportions of the dry materials w/%
    表 5 SLA的矿物组成Table 5 Mineralogy composition of SLA
    表 4 水泥的矿物组成Table 4 Mineralogy composition of cement
    表 1 试验用土的基础指标Table 1 Basic indexes of the soil
    表 3 黏土的矿物组成Table 3 Mineralogy composition of soil
    表 8 各试样的qu值Table 8 qu values of samples
    图1 3种材料的XRD-Rietveld结果Fig.1 XRD-Rietveld results of the three kinds of materials
    图2 试验过程示意图Fig.2 Schematic diagram of experiment process(size:cm)
    图3 试样的热分析曲线Fig.3 DTG curves of samples
    图4 龄期24~672 h时试样CS、LA20、LA50、LA80、LA100的受热失重Fig.4 Mass loss ratio of samples CS, LA20, LA50, LA80 and LA100 after 24 to 672 h
    图5 Ca(OH)2与CSH、钠沸石、AFt、C3AS0.41H5.18的SI相关性分析Fig.5 Correlation analysis on the SI of Ca(OH)2 and CSH, AFt, C3AS0.41H5.18, natrolite
    表 2 原材料的氧化物组成Table 2 Oxide compositions of raw materials
    参考文献
    [1] CHRYSOCHOOU M. Investigation of the mineral dissolution rate and strength development in stabilized soils using quantitative X-ray diffraction[J]. Journal of Materials in Civil Engineering, 2014, 26:288-295.
    [2] 徐菲, 蔡跃波, 钱文勋,等. 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41(9):1679-1687.XU Fei, CAI Yuebo, QIAN Wenxun, et al. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9):1679-1687. (in Chinese)
    [3] HO L S, NAKARAI K, DUC M, et al. Analysis of strength development in cement-treated soils under different curing conditions through microstructural and chemical investigations[J]. Construction and Building Materials, 2018, 166:634-646.
    [4] 俞家人, 陈永辉, 陈庚,等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2):364-371.YU Jiaren, CHEN Yonghui, CHEN Geng, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2):364-371. (in Chinese)
    [5] VITALE E, DENEELE D, PARIS M, et al. Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays[J]. Applied Clay Science, 2017, 141:36-45.
    [6] JIANG Y Q, ZHANG S J, LIU X Y, et al. Early calcium monocarboaluminate hydrate formation in cement paste:Effect of polycarboxylate type admixture[J]. Journal of Southeast University(English), 2010, 26(4):574-577.
    [7] HOSHINO S, YAMADA K, HIRAO H. XRD/rietveld analysis of the hydration and strength development of slag and limestone blended cement[J]. Journal of Advanced Concrete Technology, 2006, 4(3):357-367.
    [8] 刘粤惠, 刘平安. X射线衍射分析原理与应用[M]. 北京:化学工业出版社, 2003.LIU Yuehui, LIU Pingan. Principle and application of X-ray diffraction analysis[M]. Beijing:Chemical Industry Press, 2003. (in Chinese)
    [9] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18:A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cement and Concrete Research, 2019, 115:472-506.
    [10] ROTHSTEIN D, THOMAS J J, CHRISTENSEN B J, et al. Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time[J]. Cement and Concrete Research, 2002, 32(10):1663-1671.
    [11] SHAH V, SCRIVENER K, BHATTACHARJEE B, et al. Changes in microstructure characteristics of cement paste on carbonation[J]. Cement and Concrete Research, 2018, 109:184-197.
    [12] LOTHENBACH B, ZAJAC M. Application of thermodynamic modelling to hydrated cements[J]. Cement and Concrete Research, 2019, 123:105779.
    [13] VOLLPRACHT A, LOTHENBACH B, SNELLINGS R, et al. The pore solution of blended cements:A review[J]. Materials and Structures, 2016, 49(8):3341-3367.
    [14] JIANG Y, LING T C, SHI C J, et al. Characteristics of steel slags and their use in cement and concrete—A review[J]. Resources, Conservation and Recycling, 2018, 136:187-197.
    [15] NORDSTRUM D K, MUNOZ J L. Geochemical thermodynamics[M]. Caldwell:Blackwell Scientific Publications, 1986.
    [16] GAILHANOU H, BLANC P, ROGEZ J, et al. Thermodynamic properties of illite, smectite and beidellite by calorimetric methods:Enthalpies of formation, heat capacities, entropies and Gibbs free energies of formation[J]. Geochimica Et Cosmochimica Acta, 2012, 89:279-301.
    [17] XU F, WEI H, QIAN W X, et al. Experimental investigation on replacing cement by sintered limestone ash from the steelmaking industry for cement-stabilized soil:Engineering performances and micro-scale analysis[J]. Construction and Building Materials, 2020, 235:117425.
    [18] ZHANG Z H, ZHU Y C, ZHU H J, et al. Effect of drying procedures on pore structure and phase evolution of alkali-activated cements[J]. Cement and Concrete Composites, 2019, 96:194-203.
    [19] 薛君玕, 许温葭, 叶铭勋. 硬化水泥浆体孔隙中液相的分离和研究[J]. 硅酸盐学报, 1983, 11(3):276-289.XUE Jungan, XU Wenjia, YE Mingxun. A study of the liquid phase separated from the pores of hardened cement paste[J]. Journal of the Chinese Ceramic Society, 1983, 11(3):276-289. (in Chinese)
    [20] JEONG Y, YUM W S, MOON J, et al. Utilization of precipitated CaCO3 from carbon sequestration of industrially emitted CO2 in cementless CaO-activated blast-furnace slag binder system[J]. Journal of Cleaner Production, 2017, 166:649-659.
    [21] TIRONI A, TREZZA M A, SCIAN A N, et al. Assessment of pozzolanic activity of different calcined clays[J]. Cement and Concrete Composites, 2013, 37:319-327.
    [22] MESBAH A, CAU-DIT-COUMES C, RENAUDIN G, et al. Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate[J]. Cement and Concrete Research, 2012, 42(8):1157-1165.
    [23] 黄新, 宁建国, 许晟, 等. 固化土孔隙液Ca(OH)2饱和度对强度的影响[J]. 工业建筑, 2006, 36(7):19-24.HUANG Xin, NING Jianguo, XU Sheng, et al. Influence of Ca(OH)2 concentration in the pore solution on strength increasing of the stabilized soil[J]. Industrial Construction, 2006, 36(7):19-24. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐菲,韦华,钱文勋,胡少伟,蔡跃波.水泥土组成矿物的热重-热力学模拟联用分析[J].建筑材料学报,2022,25(4):424-433

复制
分享
文章指标
  • 点击次数:217
  • 下载次数: 506
  • HTML阅读次数: 20
  • 引用次数: 0
历史
  • 收稿日期:2021-01-15
  • 最后修改日期:2021-06-17
  • 在线发布日期: 2024-01-28
文章二维码