车桥耦合振动对钢纤维与磷酸镁水泥砂浆界面黏结性能的影响
作者:
作者单位:

1.同济大学 先进土木工程材料教育部重点实验室,上海 201804;2.同济大学 材料科学与工程 学院,上海 201804;3.广东省高速公路有限公司,广东 广州 510180

作者简介:

高国旗(1997—),男,山西吕梁人,同济大学硕士生. E-mail: gguqoi@126.com

通讯作者:

杨正宏(1967—),男,安徽六安人,同济大学教授,博士生导师,博士. E-mail: tjzhy92037@163.com

中图分类号:

TU528.572

基金项目:

广东省高速公路有限公司科研项目(MZKJ-SY-001)


Effect of Vehicle-Bridge Coupled Vibration on Interface Bond Performance between Steel Fiber and Magnesium Phosphate Cement Mortar
Author:
Affiliation:

1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China;2.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;3.Guangdong Provincial Highway Co., Ltd., Guangzhou 510180, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    制备了一种超早强型纤维增强磷酸镁水泥(MPC),通过对纤维拔出性能及孔结构的研究,系统地分析了车桥耦合振动的振幅和频率对钢纤维与MPC砂浆之间界面黏结性能及微观结构的影响.结果表明:钢纤维与MPC砂浆的黏结性能随着振幅、频率的增加呈现先增大后减小的趋势;与静置条件下相比,振幅为2、3 mm,频率为3、6 Hz时,钢纤维与MPC砂浆的最大黏结强度和拉拔能提升最大;一定程度振动可以降低MPC砂浆的孔隙率,细化宏观孔,优化钢纤维与MPC砂浆的界面黏结性能.

    Abstract:

    An ultra-early-strength fiber-reinforced magnesium phosphate cement(MPC)was prepared. The influence of the amplitude and frequency of vehicle-bridge coupling vibration on the interface performance and microstructure between steel fiber and MPC was systematically analyzed through the study of fiber pullout performance and pore structure. The results show that the bond performance between steel fiber and MPC based materials increases at first and then decreases with the increase of amplitude and frequency. Compared with the static condition, when the amplitude is 2, 3 mm and the frequency is 3, 6 Hz, the maximum bond strength and pullout energy between steel fiber and MPC mortar increase maximumly. Under a certain degree of vibration, the porosity of MPC mortar can be reduced, the macroscopic pores can be refined, and the interface bond performance between steel fiber and MPC mortar can be optimized.

    表 1 磷酸镁水泥的化学组成Table 1 Chemical composition of MPC
    表 2 钢纤维物理力学性能Table 2 Physical and mechanical properties of steel fibers
    表 3 车桥耦合振动参数Table 3 Vehicle-bridge vibration parameters
    图1 不同振幅下钢纤维的拉拔荷载-滑移曲线Fig.1 Pullout load-slip curves of steel fibers under different amplitudes
    图2 不同振幅下钢纤维的拉拔能Fig.2 Pullout energy of steel fibers under different amplitudes
    图3 不同频率下钢纤维的拉拔荷载-滑移曲线Fig.3 Pullout load-slip curves of steel fibers under different frequencies
    图4 不同频率下钢纤维的拉拔能Fig.4 Pullout energy of steel fibers under different frequencies
    图5 “8”字形试件MPC砂浆的孔径分布和总孔隙率Fig.5 Pore size distribution and total porosity of “8” shaped MPC mortar specimens
    图6 “8”字形试件MPC砂浆的孔体积分数Fig.6 Pore volume fraction of “8” shaped MPC mortar specimens
    图7 f0-A0组试件中2种钢纤维拔出后的表面形貌Fig.7 Surface morphology of steel fibers in f0-A0 group after pulling out
    参考文献
    [1] HAQUE M A, CHEN B. Research progresses on magnesium phosphate cement: A review[J]. Construction and Building Materials, 2019, 211:885-898.
    [2] 高明, 刘宁, 陈兵. 微硅粉改性磷酸镁水泥砂浆试验研究[J]. 建筑材料学报, 2020, 23(1):29-34.GAO Ming, LIU Ning, CHEN Bing. Effect of silica fume on properties of magnesium phosphate cement mortar[J]. Journal of Building Materials, 2020, 23(1):29-34. (in Chinese)
    [3] 张爱莲, 张林春, 俞金艳, 等. 磷酸镁水泥基材料力学性能研究[J]. 硅酸盐通报, 2020, 39(2):422-427.ZHANG Ailian, ZHANG Linchun, YU Jinyan, et al. Research on mechanical performance of magnesium phosphate cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2):422-427. (in Chinese)
    [4] 孟芹, 廖梓珺, 李云涛. 磷酸镁水泥的研究现状及发展趋势[J]. 硅酸盐通报, 2017, 36(4):1245-1253.MENG Qin, LIAO Zijun, LI Yuntao. Research status and development trend of magnesium phosphate cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4):1245-1253. (in Chinese)
    [5] PÉRA J, AMBROISE J. Fiber-reinforced magnesia-phosphate cement composites for rapid repair[J]. Cement and Concrete Composites, 1998, 20(1):31-39.
    [6] 薛伶俐,黎红兵,高云龙,等. 磷酸镁水泥基材料与混凝土粘结性能研究进展[J]. 硅酸盐通报, 2020, 39(9):2724-2731.XUE Lingli, LI Hongbing, GAO Yunlong, et al. Research progress on bonding performance of magnesium phosphate cement-based materials and concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9):2724-2731. (in Chinese)
    [7] 俞家欢,闫林伟. 磷酸镁混凝土路面快速修补材料的耐水性试验[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(5):855-863.YU Jiahuan, YAN Linwei. Water resistance of magnesium phosphate concrete pavement with rapid repairing materials[J]. Journal of Shenyang Jianzhu University(Natural Science), 2018, 34(5):855-863. (in Chinese)
    [8] 吴洲,沙建芳,徐海源,等. 磷酸镁水泥增韧改性研究进展[J]. 材料导报, 2016, 30(增刊1):454-457.WU Zhou, SHA Jianfang, XU Haiyuan, et al. Research progress on toughening of magnesium phosphate cement[J]. Materials Reports, 2016, 30(Suppl 1):454-457. (in Chinese)
    [9] 肖炳斐,陈玥,房琦,等. 磷酸镁水泥复合材料的研究进展[J]. 功能材料, 2020, 51(8):7-13.XIAO Bingfei, CHEN Yue, FANG Qi, et al. Research progresses on magnesium phosphate cement-based composites:A review[J]. Journal of Functional Materials, 2020, 51(8):7-13. (in Chinese)
    [10] 汪宏涛,钱觉时,曹巨辉,等. 钢纤维增强磷酸镁水泥砂浆的性能与应用[J]. 建筑技术, 2006, 37(6):462-464.WANG Hongtao, QIAN Jueshi, CAO Juhui, et al. Properties and application of steel fiber reinforced magnesia phosphate cement mortar[J]. Architecture Technology, 2006, 37(6):462-464. (in Chinese)
    [11] AMINUL HAQUE M, CHEN B, AHMAD M R, et al. Mechanical strength and flexural parameters analysis of micro-steel, polyvinyl and basalt fibre reinforced magnesium phosphate cement mortars[J]. Construction and Building Materials, 2020, 235:666-679.
    [12] AMINUL HAQUE M, CHEN B, AHMAD M R, et al. Evaluating the physical and strength properties of fibre reinforced magnesium phosphate cement mortar considering mass loss[J]. Construction and Building Materials, 2019, 217:427-440.
    [13] HU F, SHEIKH M N, HADI M N S, et al. Interface bond performance of steel fibre embedded in magnesium phosphate cementitious composite[J]. Construction and Building Materials, 2018, 185:648-660.
    [14] HU F, SHEIKH M N, HADI M N S, et al. Pullout behaviour of different types of steel fibres embedded in magnesium phosphate cementitious matrix[J]. International Journal of Concrete Structures and Materials, 2019, 13(1):33.
    [15] 李振,秦继辉,尤超,等. 渗浆法钢纤维增强磷酸镁水泥基复合材料的力学性能[J]. 硅酸盐学报, 2019, 47(11):1559-1565.LI Zhen, QIN Jihui, YOU Chao, et al. Mechanical properties of steel fiber reinforced magnesium phosphate cement-based composite by slurry infiltrating[J]. Journal of the Chinese Ceramic Society, 2019, 47(11):1559-1565. (in Chinese)
    [16] 魏建军,邢姣秀,付智. 行车荷载引起桥梁振动对修复混凝土性能影响[J]. 东南大学学报(自然科学版), 2010, 40(5):1057-1060.WEI Jianjun, XING Jiaoxiu, FU Zhi. Effect of traffic load induced bridge vibrations on concrete tensile properties[J]. Journal of Southeast University(Natural Science), 2010, 40(5):1057-1060. (in Chinese)
    [17] 蒋正武,任强,袁政成. 车桥耦合振动对混凝土早期性能的影响及其损伤机理[J]. 建筑材料学报, 2015, 18(3):471-476.JIANG Zhengwu, REN Qiang, YUAN Zhengcheng. Effects of vehicle-bridge coupled vibration on early-age properties of concrete and its damage mechanism[J]. Journal of Building Materials, 2015, 18(3):471-476. (in Chinese)
    [18] 潘慧敏,潘会滨,赵庆新. 车桥振动对新浇筑混凝土性能的影响研究进展[J]. 硅酸盐通报, 2016, 35(2):449-452,457.PAN Huimin, PAN Huibin, ZHAO Qingxin. Development on influence of vehicle bridge vibration on the performance of young concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(2):449-452,457. (in Chinese)
    [19] 谌润水,胡钊芳. 公路桥梁荷载试验[M]. 北京:人民交通出版社, 2003:65-67.SHEN Runshui, HU Zhaofang. Load test of highway bridge[M]. Beijing:China Communications Press, 2003:65-67. (in Chinese)
    [20] MEHTA P K, MONTERIO P J M. Concrete:Microstructure, properties and materials[M]. 3rd ed. New York:McGraw-Hill Professional, 2006:281-315.
    [21] LIAN C, ZHUGE Y, BEECHAM S. The relationship between porosity and strength for porous concrete[J]. Construction and Building Materials, 2011, 25(11):4294-4298.
    [22] ABDALLAH S, FAN M, REES D W A. Bonding mechanisms and strength of steel fiber-reinforced cementitious composites:Overview[J]. Journal of Materials in Civil Engineering, 2018, 30(3):040180013.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高国旗,陈达章,王顺风,刘思佳,杨正宏.车桥耦合振动对钢纤维与磷酸镁水泥砂浆界面黏结性能的影响[J].建筑材料学报,2022,25(4):353-359

复制
分享
文章指标
  • 点击次数:166
  • 下载次数: 354
  • HTML阅读次数: 35
  • 引用次数: 0
历史
  • 收稿日期:2020-12-27
  • 最后修改日期:2021-02-21
  • 在线发布日期: 2024-01-28
文章二维码