BFRPGFRP筋剪切性能的温度效应
作者:
作者单位:

1.江苏大学 土木工程与力学学院,江苏 镇江 212013;2.上海宏信建筑科技有限公司,上海 201800

作者简介:

蔡启明(1996—),男,江苏东台人,江苏大学硕士生.E-mail: 3426694112@qq.com

通讯作者:

陆春华(1979—),男,江苏昆山人,江苏大学教授,博士生导师,博士.E-mail: lch79@ujs.edu.cn

中图分类号:

TU502+.6

基金项目:

国家自然科学基金资助项目(51878319, 51578267)


Temperature Effect on Shear Properties of BFRP and GFRP Bar
Author:
Affiliation:

1.Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China;2.Shanghai Hongxin Construction Technology Co., Ltd., Shanghai 201800, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对温度作用后的玄武岩纤维增强复合材料(BFRP)筋和玻璃纤维增强复合材料(GFRP)筋进行了短梁剪切试验,研究了高温后筋材的剪切性能,并提出了温度作用后BFRP、GFRP筋剪切强度的预测计算模型.结果表明:BFRP、GFRP筋的剪切强度均随着温度的升高而逐渐降低;直径为12 mm的BFRP、GFRP筋的剪切强度退化速率比直径为16 mm的更快;270 ℃高温下,筋材的剪切强度保留率均随着恒温时间的延长呈下降趋势,但BFRP筋的退化速率明显低于GFRP筋;BFRP、GFRP筋剪切强度的退化都主要源于纤维与树脂基体交联度的降低及基体的热降解;与GFRP筋相比,BFRP筋具有更优的耐高温性能.

    Abstract:

    Short beam shear tests of basalt fiber reinforced composite (BFRP) bars and glass fiber reinforced composite (GFRP) bars at different temperatures were carried out, and the shear properties of the bars at high temperature were studied. The prediction and calculation models of the temperature effect on shear strength of BFRP and GFRP bars after temperature were put forward. The results show that the shear strength of BFRP and GFRP bars decreases gradually with the increase of temperature. The shear strength degradation rate of the BFRP and GFRP bars with a diameter of 12 mm is faster than that of bas with a diameter of 16 mm. At 270 ℃, the shear strength retention of the bars decreases with the extension of the constant temperature time, but the degradtion rate of BFRP bars is significantly lower than that of GFRP bars. The shear strength degradation of BFRP and GFRP bars is mainly due to the reduction of the cross-linking degree between the fiber and resin matrix and the thermal degradation of the matrix. Compared to GFRP bars, BFRP bars have better high temperature resistance.

    表 1 BFRP、GFRP筋的力学性能Table 1 Mechanical properties of BFRP and GFRP bars
    图1 短梁剪切试验示意图Fig.1 Schematic diagram of short-beam shear test
    图2 不同温度下试件的表观变化Fig.2 Apparent changes of specimens under different temperatures
    图3 G16筋在20、350 ℃下的剪切破坏形态Fig.3 Shear failure modes of G16 bar at 20 and 350 ℃
    图4 不同温度下B16和G16筋的剪切载荷-位移曲线Fig.4 Shear load-displacement curves of B16 and G16 bars under different temperatures
    图5 不同恒温时间下BFRP和GFRP筋剪切强度保留率(270 ℃)Fig.5 Shear strength retention rate of BFRP and GFRP bars under different constant temperature time (270 ℃)
    图6 不同温度下B16和G16筋的SEM照片Fig.6 SEM images of B16 and G16 bars under different temperatures
    图7 BFRP和GFRP筋剪切强度保留率与温度的关系曲线Fig.7 Relation curves between temperature and shear strength retention of BFRP and GFRP Bars
    表 2 不同温度下BFRP和GFRP筋的剪切强度及其退化率Table 2 Shearing strength and its degradation rate of BFRP and GFRP bars after different temperatures treatment
    参考文献
    [1] 李杉, 任慧韬, 黄承逵, 等. 温度与碱溶液作用下FRP片材耐久性研究[J], 建筑材料学报, 2010, 13(1):94-99.LI Shan, REN Huitao, HUANG Chengkui, et al. Combined effects of temperature and alkaline solution on durability of FRP sheets[J]. Journal of Building Materials, 2010, 13(1):94-99. (in Chinese)
    [2] 薛伟辰, 付凯, 秦珩. 预制夹芯保温墙体FRP连接件抗拉强度加速老化试验研究[J]. 建筑材料学报, 2014, 17(3):420-424.XUE Weichen, FU Kai, QIN Heng. Accelerated aging tests of tensile strength of FRP connectors in precast concrete sandwich wall panels[J]. Journal of Building Materials, 2014, 17(3):420-424. (in Chinese)
    [3] 李趁趁, 王英来, 赵军, 等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6):1076-1081.LI Chenchen, WANG Yinglai, ZHAO Jun, et al. Longitudinal tensile properties of FRP bars after high temperature[J]. Journal of Building Materials, 2014, 17(6):1076-1081. (in Chinese)
    [4] ROBERT M, BENMOKRANE B. Behavior of GFRP reinforcing bars subjected to extreme temperatures[J]. Journal of Composites for Construction, 2010, 14(4):353-360.
    [5] WANG Y C, WONG P M H, KODUR V. An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures[J]. Composite Structures, 2007, 80(1):131-140.
    [6] CHEN Y, DAVALOS J F, RAY I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests[J]. Journal of Composites for Construction, 2006, 10(4):279-286.
    [7] 郝文峰, 郭广平, 陈新文, 等. 基于数字图像相关方法的复合材料层间剪切性能研究[J]. 玻璃钢/复合材料, 2016(1):29-32.HAO Wenfeng, GUO Guangping, CHEN Xinwen, et al. Characterization of interlaminate shear properties for composite materials using digital image correlation[J]. Fiber Reinforced Plastics/Composites, 2016(1):29-32. (in Chinese)
    [8] 高丹盈, 李士会, 朱海堂, 等. 玻璃纤维增强聚合物筋压缩和剪切性能试验研究[J]. 玻璃钢/复合材料, 2009(3):28-32.GAO Danying, LI Shihui, ZHU Haitang, et al. Experimental research on basic mechanical properties of GFRP bars[J]. Fiber Reinforced Plastics/Composites, 2009(3):28-32. (in Chinese)
    [9] SAWPAN M A. Shear properties and durability of GFRP reinforcement bar aged in seawater[J]. Polymer Testing, 2019, 75:312-320.
    [10] CHEN Y, DAVALOS J F, RAY I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures, 2007, 78(1):101-111.
    [11] WANG Z K, ZHAO X L, XIAN G J, et al. Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment[J]. Construction and Building Materials, 2017, 156:985-1004.
    [12] SAWPAN M A, MAMUN A A, HOLDSWORTH P G. Long term durability of pultruded polymer composite rebar in concrete environment[J]. Materials and Design, 2014, 57:616-624.
    [13] MOURITZ A P. Post-fire flexural properties of fibre-reinforced polyester, epoxy and phenolic composites[J]. Journal of Materials Science, 2002, 37(7):1377-1386.
    [14] 吴敬宇. 玄武岩纤维复合筋高温性能研究[D]. 北京:中国地震局工程力学研究所, 2011.WU Jingyu. Study on high temperature performance of basat fiber reinforced polymer bars[D]. Beijing:Engineering Mechanics Institute of China Earthquake Administration, 2011. (in Chinese)
    [15] WANG M C, ZHANG Z G, LI Y B, et al. Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2008, 27(4):393-407.
    [16] SIM J, PARK C, MOON D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B:Engineering, 2005, 36(6/7):504-512.
    [17] 周长东, 吕西林, 金叶. 火灾高温下玻璃纤维筋的力学性能研究[J]. 建筑科学与工程学报, 2006, 23(1):23-28.ZHOU Changdong, Xilin LÜ, JIN Ye. Research on mechanical behavior of GFRP bars in high temperature[J]. Journal of Architecture and Civil Engineering, 2006, 23(1):23-28. (in Chinese)
    [18] 张凯. 火灾高温下及高温后结构中FRP筋残余力学性能研究[D]. 南京:东南大学, 2018.ZHANG Kai. Experimental investigation on the residual mechanical properties of FRP bars in the structure during and after exposure to high temperatures[D]. Nanjing:Dongnan University, 2018. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡启明,陆春华,延永东,张菊连.BFRPGFRP筋剪切性能的温度效应[J].建筑材料学报,2022,25(4):395-400

复制
分享
文章指标
  • 点击次数:163
  • 下载次数: 447
  • HTML阅读次数: 35
  • 引用次数: 0
历史
  • 收稿日期:2020-12-10
  • 最后修改日期:2021-02-25
  • 在线发布日期: 2024-01-28
文章二维码